Spaces:
Running
Running
import os | |
import sys | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from DocScanner.extractor import BasicEncoder | |
from DocScanner.update import BasicUpdateBlock | |
def bilinear_sampler(img, coords, mode="bilinear", mask=False): | |
"""Wrapper for grid_sample, uses pixel coordinates""" | |
H, W = img.shape[-2:] | |
xgrid, ygrid = coords.split([1, 1], dim=-1) | |
xgrid = 2 * xgrid / (W - 1) - 1 | |
ygrid = 2 * ygrid / (H - 1) - 1 | |
grid = torch.cat([xgrid, ygrid], dim=-1) | |
img = F.grid_sample(img, grid, align_corners=True) | |
if mask: | |
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1) | |
return img, mask.float() | |
return img | |
def coords_grid(batch, ht, wd): | |
coords = torch.meshgrid(torch.arange(ht), torch.arange(wd)) | |
coords = torch.stack(coords[::-1], dim=0).float() | |
return coords[None].repeat(batch, 1, 1, 1) | |
class DocScanner(nn.Module): | |
def __init__(self): | |
super(DocScanner, self).__init__() | |
self.hidden_dim = hdim = 160 | |
self.context_dim = 160 | |
self.fnet = BasicEncoder(output_dim=320, norm_fn="instance") | |
self.update_block = BasicUpdateBlock(hidden_dim=hdim) | |
def freeze_bn(self): | |
for m in self.modules(): | |
if isinstance(m, nn.BatchNorm2d): | |
m.eval() | |
def initialize_flow(self, img): | |
N, C, H, W = img.shape | |
coodslar = coords_grid(N, H, W).to(img.device) | |
coords0 = coords_grid(N, H // 8, W // 8).to(img.device) | |
coords1 = coords_grid(N, H // 8, W // 8).to(img.device) | |
return coodslar, coords0, coords1 | |
def upsample_flow(self, flow, mask): | |
N, _, H, W = flow.shape | |
mask = mask.view(N, 1, 9, 8, 8, H, W) | |
mask = torch.softmax(mask, dim=2) | |
up_flow = F.unfold(8 * flow, [3, 3], padding=1) | |
up_flow = up_flow.view(N, 2, 9, 1, 1, H, W) | |
up_flow = torch.sum(mask * up_flow, dim=2) | |
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3) | |
return up_flow.reshape(N, 2, 8 * H, 8 * W) | |
def forward(self, image1, iters=12, flow_init=None, test_mode=False): | |
image1 = image1.contiguous() | |
fmap1 = self.fnet(image1) | |
warpfea = fmap1 | |
net, inp = torch.split(fmap1, [160, 160], dim=1) | |
net = torch.tanh(net) | |
inp = torch.relu(inp) | |
coodslar, coords0, coords1 = self.initialize_flow(image1) | |
if flow_init is not None: | |
coords1 = coords1 + flow_init | |
flow_predictions = [] | |
for itr in range(iters): | |
coords1 = coords1.detach() | |
flow = coords1 - coords0 | |
net, up_mask, delta_flow = self.update_block(net, inp, warpfea, flow) | |
coords1 = coords1 + delta_flow | |
flow_up = self.upsample_flow(coords1 - coords0, up_mask) | |
bm_up = coodslar + flow_up | |
warpfea = bilinear_sampler(fmap1, coords1.permute(0, 2, 3, 1)) | |
flow_predictions.append(bm_up) | |
if test_mode: | |
return bm_up | |
return flow_predictions | |