HERIUN
add models
1081f7c
raw
history blame
1.67 kB
import os
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import argparse
import os
import warnings
import cv2
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from DocScanner.model import DocScanner
from DocScanner.seg import U2NETP
from PIL import Image
warnings.filterwarnings("ignore")
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.msk = U2NETP(3, 1)
self.bm = DocScanner() # 矫正
def forward(self, x):
msk, _1, _2, _3, _4, _5, _6 = self.msk(x)
msk = (msk > 0.5).float()
x = msk * x
bm = self.bm(x, iters=12, test_mode=True)
bm = (2 * (bm / 286.8) - 1) * 0.99
return bm, msk
def reload_seg_model(cuda, model, path=""):
if not bool(path):
return model
else:
model_dict = model.state_dict()
pretrained_dict = torch.load(path, map_location=cuda)
pretrained_dict = {
k[6:]: v for k, v in pretrained_dict.items() if k[6:] in model_dict
}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
return model
def reload_rec_model(cuda, model, path=""):
if not bool(path):
return model
else:
model_dict = model.state_dict()
pretrained_dict = torch.load(path, map_location=cuda)
pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
return model