Spaces:
Runtime error
Runtime error
from typing import List, Optional | |
from pathlib import Path | |
import torch | |
import hydra | |
from omegaconf import OmegaConf, DictConfig | |
from pytorch_lightning import ( | |
Callback, | |
LightningDataModule, | |
LightningModule, | |
Trainer, | |
seed_everything, | |
) | |
from pytorch_lightning.loggers import LightningLoggerBase | |
from src.utils import utils | |
log = utils.get_logger(__name__) | |
def remove_prefix(text: str, prefix: str): | |
if text.startswith(prefix): | |
return text[len(prefix) :] | |
return text # or whatever | |
def load_checkpoint(path, device='cpu'): | |
path = Path(path).expanduser() | |
if path.is_dir(): | |
path /= 'last.ckpt' | |
# dst = f'cuda:{torch.cuda.current_device()}' | |
log.info(f'Loading checkpoint from {str(path)}') | |
state_dict = torch.load(path, map_location=device) | |
# T2T-ViT checkpoint is nested in the key 'state_dict_ema' | |
if state_dict.keys() == {'state_dict_ema'}: | |
state_dict = state_dict['state_dict_ema'] | |
# Swin checkpoint is nested in the key 'model' | |
if state_dict.keys() == {'model'}: | |
state_dict = state_dict['model'] | |
# Lightning checkpoint contains extra stuff, we only want the model state dict | |
if 'pytorch-lightning_version' in state_dict: | |
state_dict = {remove_prefix(k, 'model.'): v for k, v in state_dict['state_dict'].items()} | |
return state_dict | |
def evaluate(config: DictConfig) -> None: | |
"""Example of inference with trained model. | |
It loads trained image classification model from checkpoint. | |
Then it loads example image and predicts its label. | |
""" | |
# load model from checkpoint | |
# model __init__ parameters will be loaded from ckpt automatically | |
# you can also pass some parameter explicitly to override it | |
# We want to add fields to config so need to call OmegaConf.set_struct | |
OmegaConf.set_struct(config, False) | |
# load model | |
checkpoint_type = config.eval.get('checkpoint_type', 'pytorch') | |
if checkpoint_type not in ['lightning', 'pytorch']: | |
raise NotImplementedError(f'checkpoint_type ${checkpoint_type} not supported') | |
if checkpoint_type == 'lightning': | |
cls = hydra.utils.get_class(config.task._target_) | |
model = cls.load_from_checkpoint(checkpoint_path=config.eval.ckpt) | |
elif checkpoint_type == 'pytorch': | |
model_cfg = config.model_pretrained if 'model_pretrained' in config else None | |
trained_model: LightningModule = hydra.utils.instantiate(config.task, cfg=config, | |
model_cfg=model_cfg, | |
_recursive_=False) | |
if 'ckpt' in config.eval: | |
load_return = trained_model.model.load_state_dict( | |
load_checkpoint(config.eval.ckpt, device=trained_model.device), strict=False | |
) | |
log.info(load_return) | |
if 'model_pretrained' in config: | |
... | |
else: | |
model = trained_model | |
datamodule: LightningDataModule = hydra.utils.instantiate(config.datamodule) | |
# datamodule: LightningDataModule = model._datamodule | |
datamodule.prepare_data() | |
datamodule.setup() | |
# print model hyperparameters | |
log.info(f'Model hyperparameters: {model.hparams}') | |
# Init Lightning callbacks | |
callbacks: List[Callback] = [] | |
if "callbacks" in config: | |
for _, cb_conf in config["callbacks"].items(): | |
if cb_conf is not None and "_target_" in cb_conf: | |
log.info(f"Instantiating callback <{cb_conf._target_}>") | |
callbacks.append(hydra.utils.instantiate(cb_conf)) | |
# Init Lightning loggers | |
logger: List[LightningLoggerBase] = [] | |
if "logger" in config: | |
for _, lg_conf in config["logger"].items(): | |
if lg_conf is not None and "_target_" in lg_conf: | |
log.info(f"Instantiating logger <{lg_conf._target_}>") | |
logger.append(hydra.utils.instantiate(lg_conf)) | |
# Init Lightning trainer | |
log.info(f"Instantiating trainer <{config.trainer._target_}>") | |
trainer: Trainer = hydra.utils.instantiate( | |
config.trainer, callbacks=callbacks, logger=logger, _convert_="partial" | |
) | |
# Evaluate the model | |
log.info("Starting evaluation!") | |
if config.eval.get('run_val', True): | |
trainer.validate(model=model, datamodule=datamodule) | |
if config.eval.get('run_test', True): | |
trainer.test(model=model, datamodule=datamodule) | |
# Make sure everything closed properly | |
log.info("Finalizing!") | |
utils.finish( | |
config=config, | |
model=model, | |
datamodule=datamodule, | |
trainer=trainer, | |
callbacks=callbacks, | |
logger=logger, | |
) | |