GitHub Actions
Merge branch 'FireBird-Technologies:main' into main
b0538ac
import io
import logging
import re
import json
from fastapi import APIRouter, Depends, HTTPException, Request
from typing import Dict, Optional, List, Tuple
from pydantic import BaseModel
from scripts.format_response import execute_code_from_markdown, format_code_block
from src.utils.logger import Logger
from src.routes.session_routes import get_session_id_dependency
from src.agents.agents import code_edit, code_fix
from src.db.schemas.models import CodeExecution
from src.db.init_db import get_session
import dspy
import textwrap
import os
from src.schemas.code_schema import CodeExecuteRequest, CodeEditRequest, CodeFixRequest, CodeCleanRequest, GetLatestCodeRequest
def clean_print_statements(code_block):
"""
This function cleans up any `print()` statements that might contain unwanted `\n` characters.
It ensures print statements are properly formatted without unnecessary newlines.
"""
# This regex targets print statements, even if they have newlines inside
return re.sub(r'print\((.*?)(\\n.*?)(.*?)\)', r'print(\1\3)', code_block, flags=re.DOTALL)
def remove_main_block(code):
# Match the __main__ block
pattern = r'(?m)^if\s+__name__\s*==\s*["\']__main__["\']\s*:\s*\n((?:\s+.*\n?)*)'
match = re.search(pattern, code)
if match:
main_block = match.group(1)
# Dedent the code block inside __main__
dedented_block = textwrap.dedent(main_block)
# Remove \n from any print statements in the block (also handling multiline print cases)
dedented_block = clean_print_statements(dedented_block)
# Replace the block in the code
cleaned_code = re.sub(pattern, dedented_block, code)
# Optional: Remove leading newlines if any
cleaned_code = cleaned_code.strip()
return cleaned_code
return code
# Initialize router
router = APIRouter(
prefix="/code",
tags=["code"],
responses={404: {"description": "Not found"}},
)
# Initialize logger
logger = Logger("code_routes", see_time=True, console_log=False)
try_logger = Logger("try_code_routes", see_time=True, console_log=False)
def score_code(args, code):
"""
Simple code scorer that checks if code runs successfully.
Args:
args: Arguments (unused but required for dspy.Refine)
code: Code object with combined_code attribute
Returns:
int: Score (0=error, 1=success)
"""
code_text = code.fixed_code
try:
# Fix try statement syntax
code_text = code_text.replace('try\n', 'try:\n')
code_text = code_text.replace('```python', '').replace('```', '')
# Remove code patterns that would make the code unrunnable
invalid_patterns = [
'```', '\\n', '\\t', '\\r'
]
for pattern in invalid_patterns:
if pattern in code_text:
code_text = code_text.replace(pattern, '')
# Remove .show() method calls to prevent blocking
cleaned_code = re.sub(r"plt\.show\(\).*?(\n|$)", '', code_text)
cleaned_code = re.sub(r'\.show\([^)]*\)', '', cleaned_code)
cleaned_code = remove_main_block(cleaned_code)
# Execute code in a new namespace
local_vars = {}
exec(cleaned_code, globals(), local_vars)
# If we get here, code executed successfully
return 1
except Exception as e:
return 0
refine_fixer = dspy.Refine(
module=dspy.ChainOfThought(code_fix),
N=3,
threshold=1.0,
reward_fn=score_code,
fail_count=3
)
def format_code(code: str) -> str:
"""
Clean the code by organizing imports and ensuring code blocks are properly formatted.
Args:
code (str): The raw Python code as a string.
Returns:
str: The cleaned code.
"""
# Move imports to top
code = move_imports_to_top(code)
# Split code into blocks if they exist (based on comments like '# agent_name code start')
code_blocks = []
current_block = []
current_agent = None
for line in code.splitlines():
if re.search(r'#\s+\w+\s+code\s+start', line.lower()):
if current_agent and current_block:
code_blocks.append((current_agent, '\n'.join(current_block)))
current_block = []
current_agent = re.search(r'#\s+(\w+)\s+code\s+start', line.lower()).group(1)
current_block.append(line)
elif re.search(r'#\s+\w+\s+code\s+end', line.lower()):
if current_block:
current_block.append(line)
code_blocks.append((current_agent, '\n'.join(current_block)))
current_agent = None
current_block = []
else:
current_block.append(line)
# If there's remaining code not in a block
if current_block:
if current_agent:
code_blocks.append((current_agent, '\n'.join(current_block)))
else:
code_blocks.append(('main', '\n'.join(current_block)))
# If no blocks were identified, return the original cleaned code
if not code_blocks:
return code
# Reconstruct the code with the identified blocks
return '\n\n'.join([block[1] for block in code_blocks])
def extract_code_blocks(code: str) -> Dict[str, str]:
"""
Extract code blocks from the code based on agent name comments.
Args:
code (str): The code containing multiple blocks
Returns:
Dict[str, str]: Dictionary mapping agent names to their code blocks
"""
# Find code blocks with start and end markers
block_pattern = r'(#\s+(\w+)\s+code\s+start[\s\S]*?#\s+\w+\s+code\s+end)'
blocks_with_markers = re.findall(block_pattern, code, re.DOTALL)
if not blocks_with_markers:
# If no blocks found, treat the entire code as one block
return {'main': code}
result = {}
for full_block, agent_name in blocks_with_markers:
result[agent_name.lower()] = full_block.strip()
return result
def identify_error_blocks(code: str, error_output: str) -> List[Tuple[str, str, str]]:
"""
Identify code blocks that have errors during execution.
Args:
code (str): The full code containing multiple agent blocks
error_output (str): The error output from execution
Returns:
List[Tuple[str, str, str]]: List of tuples containing (agent_name, block_code, error_message)
"""
# Parse the error output to find which agents had errors
faulty_blocks = []
# Find error patterns like "=== ERROR IN AGENT_NAME ===" or "=== ERROR IN UNKNOWN_AGENT ==="
error_matches = []
for match in re.finditer(
r'^===\s+ERROR\s+IN\s+([A-Za-z0-9_]+)\s+===\s*([\s\S]*?)(?=^===\s+[A-Z]+\s+IN\s+[A-Za-z0-9_]+\s+===|\Z)',
error_output,
re.MULTILINE
):
error_matches.append((match.group(1), match.group(2)))
if not error_matches:
return []
# Find all code blocks in the given code
blocks = {}
for agent_match in re.finditer(r'#\s+(\w+)\s+code\s+start([\s\S]*?)#\s+\w+\s+code\s+end', code, re.DOTALL):
agent_name = agent_match.group(1).lower()
full_block = agent_match.group(0)
blocks[agent_name] = full_block
# Match errors with their corresponding code blocks
matched_blocks = set()
for agent_name, error_message in error_matches:
# Format from error output is AGENT_NAME_AGENT, we need to extract the base name
# Remove '_AGENT' suffix if present and convert to lowercase
normalized_name = agent_name.lower()
if normalized_name.endswith('_agent'):
normalized_name = normalized_name[:-6] # Remove '_agent' suffix
# Try direct match first
if normalized_name in blocks:
# Extract the relevant error information
processed_error = extract_relevant_error_section(error_message)
faulty_blocks.append((normalized_name, blocks[normalized_name], processed_error))
matched_blocks.add(normalized_name)
else:
# Try fuzzy matching for agent names
for block_name, block_code in blocks.items():
if block_name not in matched_blocks and (normalized_name in block_name or block_name in normalized_name):
# Extract the relevant error information
processed_error = extract_relevant_error_section(error_message)
faulty_blocks.append((block_name, block_code, processed_error))
matched_blocks.add(block_name)
break
# logger.log_message(f"Faulty blocks found: {len(faulty_blocks)}", level=logging.INFO)
# logger.log_message(f"Faulty blocks: {faulty_blocks}", level=logging.INFO)
return faulty_blocks
def extract_relevant_error_section(error_message: str) -> str:
"""
Extract the most relevant parts of the error message to help with fixing.
Args:
error_message (str): The full error message
Returns:
str: The processed error message with the most relevant information
"""
error_lines = error_message.strip().split('\n')
# If "Problem at this location" is in the error, focus on that section
if 'Problem at this location:' in error_message:
problem_idx = -1
for i, line in enumerate(error_lines):
if 'Problem at this location:' in line:
problem_idx = i
break
if problem_idx >= 0:
# Include the "Problem at this location" section and a few lines after
end_idx = min(problem_idx + 10, len(error_lines))
problem_section = error_lines[problem_idx:end_idx]
# Also include the error type from the end
error_type_lines = []
for line in reversed(error_lines):
if line.startswith('TypeError:') or line.startswith('ValueError:') or line.startswith('AttributeError:'):
error_type_lines = [line]
break
return '\n'.join(problem_section + error_type_lines)
# If we couldn't find "Problem at this location", include first few and last few lines
if len(error_lines) > 10:
return '\n'.join(error_lines[:5] + error_lines[-7:])
# If the error is short enough, return as is
return error_message
async def fix_code_with_dspy(code: str, error: str, dataset_context: str = ""):
"""
Fix code with errors by identifying faulty blocks and fixing them individually using async refine
Args:
code (str): The code containing errors
error (str): Error message from execution
dataset_context (str): Context about the dataset
Returns:
str: The fixed code
"""
import asyncio
# Check if we have valid API key
anthropic_key = os.environ.get('ANTHROPIC_API_KEY')
if not anthropic_key:
raise ValueError("ANTHROPIC_API_KEY environment variable is not set")
# Find the blocks with errors
faulty_blocks = identify_error_blocks(code, error)
if not faulty_blocks:
# If no specific errors found, fix the entire code using refine
try:
# Create the LM instance that will be used
thread_lm = dspy.LM("anthropic/claude-3-5-sonnet-latest", api_key=anthropic_key, max_tokens=5000)
# Define the blocking function to run in thread
def run_refine_fixer():
with dspy.context(lm=thread_lm):
return refine_fixer(
dataset_context=str(dataset_context) or "",
faulty_code=str(code) or "",
error=str(error) or "",
)
# Use asyncio.to_thread for better async integration
result = await asyncio.to_thread(run_refine_fixer)
return result.fixed_code
except Exception as e:
logger.log_message(f"Error during refine code fixing: {str(e)}", level=logging.ERROR)
raise e
# Start with the original code
result_code = code.replace("```python", "").replace("```", "")
# Fix each faulty block separately using async refine
try:
thread_lm = dspy.LM("anthropic/claude-3-5-sonnet-latest", api_key=anthropic_key, max_tokens=5000)
for agent_name, block_code, specific_error in faulty_blocks:
try:
# Extract inner code between the markers
inner_code_match = re.search(r'#\s+\w+\s+code\s+start\s*\n([\s\S]*?)#\s+\w+\s+code\s+end', block_code)
if not inner_code_match:
continue
inner_code = inner_code_match.group(1).strip()
# Find markers
start_marker_match = re.search(r'(#\s+\w+\s+code\s+start)', block_code)
end_marker_match = re.search(r'(#\s+\w+\s+code\s+end)', block_code)
if not start_marker_match or not end_marker_match:
logger.log_message(f"Could not find start/end markers for {agent_name}", level=logging.WARNING)
continue
start_marker = start_marker_match.group(1)
end_marker = end_marker_match.group(1)
# Extract the error type and actual error message
error_type = ""
error_msg = specific_error
# Look for common error patterns to provide focused context to the LLM
error_type_match = re.search(r'(TypeError|ValueError|AttributeError|IndexError|KeyError|NameError):\s*([^\n]+)', specific_error)
if error_type_match:
error_type = error_type_match.group(1)
error_msg = f"{error_type}: {error_type_match.group(2)}"
# Add problem location if available
if "Problem at this location:" in specific_error:
problem_section = re.search(r'Problem at this location:([\s\S]*?)(?:\n\n|$)', specific_error)
if problem_section:
error_msg = f"{error_msg}\n\nProblem at: {problem_section.group(1).strip()}"
# Define the blocking function to run in thread for this specific block
def run_block_fixer():
with dspy.context(lm=thread_lm):
return refine_fixer(
dataset_context=str(dataset_context) or "",
faulty_code=str(inner_code) or "",
error=str(error_msg) or "",
)
# Use asyncio.to_thread for better async integration
result = await asyncio.to_thread(run_block_fixer)
# Ensure the fixed code is properly stripped and doesn't include markers
fixed_inner_code = result.fixed_code.strip()
if fixed_inner_code.startswith('#') and 'code start' in fixed_inner_code:
# If LLM included markers in response, extract only inner code
inner_match = re.search(r'#\s+\w+\s+code\s+start\s*\n([\s\S]*?)#\s+\w+\s+code\s+end', fixed_inner_code)
if inner_match:
fixed_inner_code = inner_match.group(1).strip()
# Reconstruct the block with fixed code
fixed_block = f"{start_marker}\n\n{fixed_inner_code}\n\n{end_marker}"
# Replace the original block with the fixed block in the full code
result_code = result_code.replace(block_code, fixed_block)
except Exception as e:
# Log the error but continue with other blocks
logger.log_message(f"Error fixing {agent_name} block: {str(e)}", level=logging.ERROR)
continue
except Exception as e:
logger.log_message(f"Error during async code fixing: {str(e)}", level=logging.ERROR)
raise e
return result_code
def get_dataset_context(df):
"""
Generate context information about the dataset
Args:
df: The pandas dataframe
Returns:
String with dataset information (columns, types, null values)
"""
if df is None:
return "No dataset is currently loaded."
try:
# Get basic dataframe info
col_types = df.dtypes.to_dict()
null_counts = df.isnull().sum().to_dict()
# Format the context string
context = "Dataset context:\n"
context += f"- Shape: {df.shape[0]} rows, {df.shape[1]} columns\n"
context += "- Columns and types:\n"
for col, dtype in col_types.items():
null_count = null_counts.get(col, 0)
null_percent = (null_count / len(df)) * 100 if len(df) > 0 else 0
context += f" * {col} ({dtype}): {null_count} null values\n"
# Add sample values for each column (first 2 non-null values)
context += "- Sample values:\n"
for col in df.columns:
sample_values = df[col].dropna().head(2).tolist()
# if float, round to 2 decimal places
if df[col].dtype == "float64":
sample_values = [round(v, 1) for v in sample_values]
sample_str = ", ".join(str(v) for v in sample_values)
context += f" * {col}: {sample_str}\n"
return context
except Exception as e:
return "Could not generate dataset context information."
def edit_code_with_dspy(original_code: str, user_prompt: str, dataset_context: str = ""):
# gemini = dspy.LM("claude-3-5-sonnet-latest", api_key = os.environ['ANTHROPIC_API_KEY'], max_tokens=3000)
claude = dspy.LM("anthropic/claude-3-5-sonnet-latest", api_key = os.environ['ANTHROPIC_API_KEY'], max_tokens=3000)
with dspy.context(lm=claude):
code_editor = dspy.ChainOfThought(code_edit)
result = code_editor(
dataset_context=dataset_context,
original_code=original_code,
user_prompt=user_prompt,
)
return result.edited_code
def move_imports_to_top(code: str) -> str:
"""
Moves all import statements to the top of the Python code.
Args:
code (str): The raw Python code as a string.
Returns:
str: The cleaned code with import statements at the top.
"""
# Extract import statements
import_statements = re.findall(
r'^\s*(import\s+[^\n]+|from\s+[^\n]+import\s+[^\n]+)', code, flags=re.MULTILINE
)
# Remove import statements from original code
code_without_imports = re.sub(
r'^\s*(import\s+[^\n]+|from\s+[^\n]+import\s+[^\n]+)\n?', '', code, flags=re.MULTILINE
)
# Deduplicate and sort imports
sorted_imports = sorted(set(import_statements))
# Combine cleaned imports and remaining code
cleaned_code = '\n'.join(sorted_imports) + '\n\n' + code_without_imports.strip()
return cleaned_code
@router.post("/execute")
async def execute_code(
request_data: CodeExecuteRequest,
request: Request,
session_id: str = Depends(get_session_id_dependency)
):
"""
Execute code provided in the request against the session's dataframe
Args:
request_data: Body containing code to execute
request: FastAPI Request object
session_id: Session identifier
Returns:
Dictionary containing execution output and any plot outputs
"""
# Access app state via request
app_state = request.app.state
session_state = app_state.get_session_state(session_id)
# logger.log_message(f"Session State: {session_state}", level=logging.INFO)
if session_state["current_df"] is None:
raise HTTPException(
status_code=400,
detail="No dataset is currently loaded. Please link a dataset before executing code."
)
try:
code = request_data.code
if not code:
raise HTTPException(status_code=400, detail="No code provided")
# Get the user_id and chat_id from session state if available
user_id = session_state.get("user_id")
chat_id = session_state.get("chat_id")
message_id = request_data.message_id
# If message_id was not provided in the request, try to get it from the session state
if message_id is None:
message_id = session_state.get("current_message_id")
else:
# Update the session state with the provided message_id
session_state["current_message_id"] = message_id
# Get model configuration
model_config = session_state.get("model_config", {})
model_provider = model_config.get("provider", "")
model_name = model_config.get("model", "")
model_temperature = model_config.get("temperature", 0.0)
model_max_tokens = model_config.get("max_tokens", 0)
# Get database session
db = get_session()
# Check if we have an existing execution record for this message
existing_execution = None
if message_id:
try:
existing_execution = db.query(CodeExecution).filter(
CodeExecution.message_id == message_id
).first()
except Exception as query_error:
logger.log_message(f"Error querying for existing execution: {str(query_error)}", level=logging.ERROR)
# Continue without existing execution
else:
logger.log_message("No message_id provided in session state", level=logging.WARNING)
# Execute the code with the dataframe from session state
full_output = ""
json_outputs = []
matplotlib_outputs = []
is_successful = True
failed_agents = None
error_messages = None
try:
full_output, json_outputs, matplotlib_outputs = execute_code_from_markdown(code, session_state["current_df"])
# Even with "successful" execution, check for agent failures in the output
failed_blocks = identify_error_blocks(code, full_output)
if failed_blocks:
# We have some failed agents even though no exception was thrown
is_successful = False # Mark as failed if any agent failed
failed_agents = json.dumps([block[0] for block in failed_blocks])
error_messages = json.dumps({
block[0]: block[2] for block in failed_blocks
})
logger.log_message(f"Partial execution failure. Failed agents: {failed_agents}", level=logging.WARNING)
except Exception as exec_error:
full_output = str(exec_error)
json_outputs = []
matplotlib_outputs = []
is_successful = False
# Identify which agents failed
failed_blocks = identify_error_blocks(code, full_output)
# Format the failed agents and error messages
if failed_blocks:
failed_agents = json.dumps([block[0] for block in failed_blocks])
error_messages = json.dumps({
block[0]: block[2] for block in failed_blocks
})
logger.log_message(f"Execution threw exception. Failed agents: {failed_agents}", level=logging.ERROR)
# Don't re-raise the error - we want to capture the error and send it back to the client
# return error details in the response instead
# Create or update the execution record regardless of success/failure
try:
if existing_execution:
# Update existing record
existing_execution.latest_code = code
existing_execution.is_successful = is_successful
existing_execution.output = full_output
if not is_successful:
existing_execution.failed_agents = failed_agents
existing_execution.error_messages = error_messages
db.commit()
else:
# Create new record
new_execution = CodeExecution(
message_id=message_id,
chat_id=chat_id,
user_id=user_id,
initial_code=code,
latest_code=code,
is_successful=is_successful,
output=full_output,
model_provider=model_provider,
model_name=model_name,
model_temperature=model_temperature,
model_max_tokens=model_max_tokens,
failed_agents=failed_agents,
error_messages=error_messages
)
db.add(new_execution)
db.commit()
except Exception as db_error:
db.rollback()
logger.log_message(f"Error saving code execution: {str(db_error)}", level=logging.ERROR)
finally:
db.close()
# Format plotly outputs for frontend
plotly_outputs = [f"```plotly\n{json_output}\n```\n" for json_output in json_outputs]
# Format matplotlib outputs for frontend
matplotlib_chart_outputs = [f"```matplotlib\n{img_base64}\n```\n" for img_base64 in matplotlib_outputs]
# Include execution status in the response
return {
"output": full_output,
"plotly_outputs": plotly_outputs if json_outputs else None,
"matplotlib_outputs": matplotlib_chart_outputs if matplotlib_outputs else None,
"is_successful": is_successful,
"failed_agents": failed_agents
}
except Exception as e:
logger.log_message(f"Error executing code: {str(e)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail=str(e))
@router.post("/edit")
async def edit_code(
request_data: CodeEditRequest,
request: Request,
session_id: str = Depends(get_session_id_dependency)
):
"""
Edit code provided in the request using AI
Args:
request_data: Body containing original code and user prompt
request: FastAPI Request object
session_id: Session identifier
Returns:
Dictionary containing the edited code
"""
try:
# Check if code and prompt are provided
if not request_data.original_code or not request_data.user_prompt:
raise HTTPException(status_code=400, detail="Both original code and editing instructions are required")
# Access app state via request
app_state = request.app.state
session_state = app_state.get_session_state(session_id)
# Get dataset context
dataset_context = get_dataset_context(session_state["current_df"])
try:
# Use the configured language model with dataset context
edited_code = edit_code_with_dspy(
request_data.original_code,
request_data.user_prompt,
dataset_context
)
edited_code = format_code_block(edited_code)
return {
"edited_code": edited_code,
}
except Exception as e:
# Fallback if DSPy models are not initialized or there's an error
logger.log_message(f"Error with DSPy models: {str(e)}", level=logging.ERROR)
# Return a helpful error message that doesn't expose implementation details
return {
"edited_code": request_data.original_code,
"error": "Could not process edit request. Please try again later."
}
except Exception as e:
logger.log_message(f"Error editing code: {str(e)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail=str(e))
@router.post("/fix")
async def fix_code(
request_data: CodeFixRequest,
request: Request,
session_id: str = Depends(get_session_id_dependency)
):
"""
Fix code with errors using block-by-block approach
Args:
request_data: Body containing code and error message
request: FastAPI Request object
session_id: Session identifier
Returns:
Dictionary containing the fixed code and information about fixed blocks
"""
try:
# Check if code and error are provided
if not request_data.code or not request_data.error:
logger.log_message(f"Error fixing code: Both code and error message are required {request_data.code} {request_data.error}", level=logging.ERROR)
raise HTTPException(status_code=400, detail="Both code and error message are required")
# Access app state via request
app_state = request.app.state
session_state = app_state.get_session_state(session_id)
# Get dataset context
dataset_context = get_dataset_context(session_state["current_df"])
try:
# Use the code_fix agent to fix the code, with dataset context
fixed_code = await fix_code_with_dspy(
request_data.code,
request_data.error,
dataset_context
)
fixed_code = format_code_block(fixed_code)
return {
"fixed_code": fixed_code,
}
except Exception as e:
# Fallback if DSPy models are not initialized or there's an error
logger.log_message(f"Error with DSPy models: {str(e)}", level=logging.ERROR)
# Return a helpful error message that doesn't expose implementation details
return {
"fixed_code": request_data.code,
"error": "Could not process fix request. Please try again later."
}
except Exception as e:
logger.log_message(f"Error fixing code: {str(e)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail=str(e))
@router.post("/clean-code")
async def clean_code(
request_data: CodeCleanRequest,
request: Request,
session_id: str = Depends(get_session_id_dependency)
):
"""
Clean code provided in the request
Args:
request_data: Body containing code to clean
request: FastAPI Request object
session_id: Session identifier
Returns:
Dictionary containing the cleaned code
"""
try:
# Check if code is provided
if not request_data.code:
raise HTTPException(status_code=400, detail="Code is required")
# Clean the code using the format_code function
cleaned = format_code(request_data.code)
return {
"cleaned_code": cleaned,
}
except Exception as e:
logger.log_message(f"Error cleaning code: {str(e)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail=str(e))
@router.post("/get-latest-code")
async def get_latest_code(
request_data: GetLatestCodeRequest,
request: Request,
session_id: str = Depends(get_session_id_dependency)
):
"""
Retrieve the latest code for a specific message_id
Args:
request_data: Body containing message_id
request: FastAPI Request object
session_id: Session identifier
Returns:
Dictionary containing the latest code and execution status
"""
try:
message_id = request_data.message_id
if not message_id:
raise HTTPException(status_code=400, detail="Message ID is required")
# Get database session
db = get_session()
try:
# Query the database for the latest code execution record
execution_record = db.query(CodeExecution).filter(
CodeExecution.message_id == message_id
).first()
logger.log_message(f"Execution record: {execution_record.is_successful} for {message_id}", level=logging.INFO)
if execution_record:
# Return the latest code and execution status
return {
"found": True,
"message_id": message_id,
"latest_code": execution_record.latest_code,
"initial_code": execution_record.initial_code,
"is_successful": execution_record.is_successful,
"failed_agents": execution_record.failed_agents
}
else:
logger.log_message(f"No execution record found for message_id: {message_id}", level=logging.INFO)
return {
"found": False,
"message_id": message_id
}
except Exception as db_error:
logger.log_message(f"Database error retrieving latest code: {str(db_error)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail=f"Database error: {str(db_error)}")
finally:
db.close()
except Exception as e:
logger.log_message(f"Error retrieving latest code: {str(e)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail=str(e))