GitHub Actions
Update from GitHub Actions
4d16728
import io
import logging
import re
from fastapi import APIRouter, Depends, HTTPException, Request
from typing import Dict, Optional, List, Tuple
from pydantic import BaseModel
from scripts.format_response import execute_code_from_markdown, format_code_block
from src.utils.logger import Logger
from src.routes.session_routes import get_session_id_dependency
from src.agents.agents import code_edit, code_fix
import dspy
import os
# Initialize router
router = APIRouter(
prefix="/code",
tags=["code"],
responses={404: {"description": "Not found"}},
)
# Initialize logger
logger = Logger("code_routes", see_time=True, console_log=False)
try_logger = Logger("try_code_routes", see_time=True, console_log=False)
# Request body model
class CodeExecuteRequest(BaseModel):
code: str
class CodeEditRequest(BaseModel):
original_code: str
user_prompt: str
class CodeFixRequest(BaseModel):
code: str
error: str
class CodeCleanRequest(BaseModel):
code: str
def format_code(code: str) -> str:
"""
Clean the code by organizing imports and ensuring code blocks are properly formatted.
Args:
code (str): The raw Python code as a string.
Returns:
str: The cleaned code.
"""
# Move imports to top
code = move_imports_to_top(code)
# Split code into blocks if they exist (based on comments like '# agent_name code start')
code_blocks = []
current_block = []
current_agent = None
for line in code.splitlines():
if re.search(r'#\s+\w+\s+code\s+start', line.lower()):
if current_agent and current_block:
code_blocks.append((current_agent, '\n'.join(current_block)))
current_block = []
current_agent = re.search(r'#\s+(\w+)\s+code\s+start', line.lower()).group(1)
current_block.append(line)
elif re.search(r'#\s+\w+\s+code\s+end', line.lower()):
if current_block:
current_block.append(line)
code_blocks.append((current_agent, '\n'.join(current_block)))
current_agent = None
current_block = []
else:
current_block.append(line)
# If there's remaining code not in a block
if current_block:
if current_agent:
code_blocks.append((current_agent, '\n'.join(current_block)))
else:
code_blocks.append(('main', '\n'.join(current_block)))
# If no blocks were identified, return the original cleaned code
if not code_blocks:
return code
# Reconstruct the code with the identified blocks
return '\n\n'.join([block[1] for block in code_blocks])
def extract_code_blocks(code: str) -> Dict[str, str]:
"""
Extract code blocks from the code based on agent name comments.
Args:
code (str): The code containing multiple blocks
Returns:
Dict[str, str]: Dictionary mapping agent names to their code blocks
"""
# Find code blocks with start and end markers
block_pattern = r'(#\s+(\w+)\s+code\s+start[\s\S]*?#\s+\w+\s+code\s+end)'
blocks_with_markers = re.findall(block_pattern, code, re.DOTALL)
if not blocks_with_markers:
# If no blocks found, treat the entire code as one block
return {'main': code}
result = {}
for full_block, agent_name in blocks_with_markers:
result[agent_name.lower()] = full_block.strip()
return result
def identify_error_blocks(code: str, error_output: str) -> List[Tuple[str, str, str]]:
"""
Identify code blocks that have errors during execution.
Args:
code (str): The full code containing multiple agent blocks
error_output (str): The error output from execution
Returns:
List[Tuple[str, str, str]]: List of tuples containing (agent_name, block_code, error_message)
"""
# Parse the error output to find which agents had errors
faulty_blocks = []
# Find error patterns like "=== ERROR IN AGENT_NAME ==="
error_matches = re.findall(r'===\s+ERROR\s+IN\s+([A-Za-z0-9_]+)\s+===\s*([\s\S]*?)(?:(?===\s+)|$)', error_output)
if not error_matches:
return []
# Find all code blocks in the given code
blocks = {}
for agent_match in re.finditer(r'#\s+(\w+)\s+code\s+start([\s\S]*?)#\s+\w+\s+code\s+end', code, re.DOTALL):
agent_name = agent_match.group(1).lower()
full_block = agent_match.group(0)
blocks[agent_name] = full_block
# Match errors with their corresponding code blocks
matched_blocks = set()
for agent_name, error_message in error_matches:
# Format from error output is AGENT_NAME_AGENT, we need to extract the base name
# Remove '_AGENT' suffix if present and convert to lowercase
normalized_name = agent_name.lower()
if normalized_name.endswith('_agent'):
normalized_name = normalized_name[:-6] # Remove '_agent' suffix
# Try direct match first
if normalized_name in blocks:
# Extract the relevant error information
processed_error = extract_relevant_error_section(error_message)
faulty_blocks.append((normalized_name, blocks[normalized_name], processed_error))
matched_blocks.add(normalized_name)
else:
# Try fuzzy matching for agent names
for block_name, block_code in blocks.items():
if block_name not in matched_blocks and (normalized_name in block_name or block_name in normalized_name):
# Extract the relevant error information
processed_error = extract_relevant_error_section(error_message)
faulty_blocks.append((block_name, block_code, processed_error))
matched_blocks.add(block_name)
break
# logger.log_message(f"Faulty blocks found: {len(faulty_blocks)}", level=logging.INFO)
# logger.log_message(f"Faulty blocks: {faulty_blocks}", level=logging.INFO)
return faulty_blocks
def extract_relevant_error_section(error_message: str) -> str:
"""
Extract the most relevant parts of the error message to help with fixing.
Args:
error_message (str): The full error message
Returns:
str: The processed error message with the most relevant information
"""
error_lines = error_message.strip().split('\n')
# If "Problem at this location" is in the error, focus on that section
if 'Problem at this location:' in error_message:
problem_idx = -1
for i, line in enumerate(error_lines):
if 'Problem at this location:' in line:
problem_idx = i
break
if problem_idx >= 0:
# Include the "Problem at this location" section and a few lines after
end_idx = min(problem_idx + 10, len(error_lines))
problem_section = error_lines[problem_idx:end_idx]
# Also include the error type from the end
error_type_lines = []
for line in reversed(error_lines):
if line.startswith('TypeError:') or line.startswith('ValueError:') or line.startswith('AttributeError:'):
error_type_lines = [line]
break
return '\n'.join(problem_section + error_type_lines)
# If we couldn't find "Problem at this location", include first few and last few lines
if len(error_lines) > 10:
return '\n'.join(error_lines[:3] + error_lines[-3:])
# If the error is short enough, return as is
return error_message
def fix_code_with_dspy(code: str, error: str, dataset_context: str = ""):
"""
Fix code with errors by identifying faulty blocks and fixing them individually
Args:
code (str): The code containing errors
error (str): Error message from execution
dataset_context (str): Context about the dataset
Returns:
str: The fixed code
"""
gemini = dspy.LM("gemini/gemini-2.5-pro-preview-03-25", api_key = os.environ['GEMINI_API_KEY'], max_tokens=5000)
# Find the blocks with errors
faulty_blocks = identify_error_blocks(code, error)
logger.log_message(f"Number of faulty blocks found: {len(faulty_blocks)}", level=logging.INFO)
if not faulty_blocks:
# If no specific errors found, fix the entire code
with dspy.context(lm=gemini):
code_fixer = dspy.ChainOfThought(code_fix)
result = code_fixer(
dataset_context=str(dataset_context) or "",
faulty_code=str(code) or "",
error=str(error) or "",
)
return result.fixed_code
# Start with the original code
result_code = code.replace("```python", "").replace("```", "")
# Fix each faulty block separatelyw
with dspy.context(lm=gemini):
code_fixer = dspy.ChainOfThought(code_fix)
for agent_name, block_code, specific_error in faulty_blocks:
logger.log_message(f"Fixing {agent_name} block", level=logging.INFO)
try:
# Extract inner code between the markers
inner_code_match = re.search(r'#\s+\w+\s+code\s+start\s*\n([\s\S]*?)#\s+\w+\s+code\s+end', block_code)
if not inner_code_match:
logger.log_message(f"Could not extract inner code for {agent_name}", level=logging.WARNING)
continue
inner_code = inner_code_match.group(1).strip()
# Find markers
start_marker_match = re.search(r'(#\s+\w+\s+code\s+start)', block_code)
end_marker_match = re.search(r'(#\s+\w+\s+code\s+end)', block_code)
if not start_marker_match or not end_marker_match:
logger.log_message(f"Could not find start/end markers for {agent_name}", level=logging.WARNING)
continue
start_marker = start_marker_match.group(1)
end_marker = end_marker_match.group(1)
# Extract the error type and actual error message
error_type = ""
error_msg = specific_error
# Look for common error patterns to provide focused context to the LLM
error_type_match = re.search(r'(TypeError|ValueError|AttributeError|IndexError|KeyError|NameError):\s*([^\n]+)', specific_error)
if error_type_match:
error_type = error_type_match.group(1)
error_msg = f"{error_type}: {error_type_match.group(2)}"
# Add problem location if available
if "Problem at this location:" in specific_error:
problem_section = re.search(r'Problem at this location:([\s\S]*?)(?:\n\n|$)', specific_error)
if problem_section:
error_msg = f"{error_msg}\n\nProblem at: {problem_section.group(1).strip()}"
# Fix only the inner code
result = code_fixer(
dataset_context=str(dataset_context) or "",
faulty_code=str(inner_code) or "",
error=str(error_msg) or "",
)
# Ensure the fixed code is properly stripped and doesn't include markers
fixed_inner_code = result.fixed_code.strip()
if fixed_inner_code.startswith('#') and 'code start' in fixed_inner_code:
# If LLM included markers in response, extract only inner code
inner_match = re.search(r'#\s+\w+\s+code\s+start\s*\n([\s\S]*?)#\s+\w+\s+code\s+end', fixed_inner_code)
if inner_match:
fixed_inner_code = inner_match.group(1).strip()
# Reconstruct the block with fixed code
fixed_block = f"{start_marker}\n\n{fixed_inner_code}\n\n{end_marker}"
# Replace the original block with the fixed block in the full code
result_code = result_code.replace(block_code, fixed_block)
logger.log_message(f"Fixed {agent_name} block successfully", level=logging.INFO)
except Exception as e:
# Log the error but continue with other blocks
logger.log_message(f"Error fixing {agent_name} block: {str(e)}", level=logging.ERROR)
continue
return result_code
def get_dataset_context(df):
"""
Generate context information about the dataset
Args:
df: The pandas dataframe
Returns:
String with dataset information (columns, types, null values)
"""
if df is None:
return "No dataset is currently loaded."
try:
# Get basic dataframe info
col_types = df.dtypes.to_dict()
null_counts = df.isnull().sum().to_dict()
# Format the context string
context = "Dataset context:\n"
context += f"- Shape: {df.shape[0]} rows, {df.shape[1]} columns\n"
context += "- Columns and types:\n"
for col, dtype in col_types.items():
null_count = null_counts.get(col, 0)
null_percent = (null_count / len(df)) * 100 if len(df) > 0 else 0
context += f" * {col} ({dtype}): {null_count} null values\n"
# Add sample values for each column (first 2 non-null values)
context += "- Sample values:\n"
for col in df.columns:
sample_values = df[col].dropna().head(2).tolist()
# if float, round to 2 decimal places
if df[col].dtype == "float64":
sample_values = [round(v, 1) for v in sample_values]
sample_str = ", ".join(str(v) for v in sample_values)
context += f" * {col}: {sample_str}\n"
return context
except Exception as e:
logger.log_message(f"Error generating dataset context: {str(e)}", level=logging.ERROR)
return "Could not generate dataset context information."
def edit_code_with_dspy(original_code: str, user_prompt: str, dataset_context: str = ""):
gemini = dspy.LM("claude-3-5-sonnet-latest", api_key = os.environ['ANTHROPIC_API_KEY'], max_tokens=3000)
with dspy.context(lm=gemini):
code_editor = dspy.ChainOfThought(code_edit)
result = code_editor(
dataset_context=dataset_context,
original_code=original_code,
user_prompt=user_prompt,
)
return result.edited_code
def move_imports_to_top(code: str) -> str:
"""
Moves all import statements to the top of the Python code.
Args:
code (str): The raw Python code as a string.
Returns:
str: The cleaned code with import statements at the top.
"""
# Extract import statements
import_statements = re.findall(
r'^\s*(import\s+[^\n]+|from\s+[^\n]+import\s+[^\n]+)', code, flags=re.MULTILINE
)
# Remove import statements from original code
code_without_imports = re.sub(
r'^\s*(import\s+[^\n]+|from\s+[^\n]+import\s+[^\n]+)\n?', '', code, flags=re.MULTILINE
)
# Deduplicate and sort imports
sorted_imports = sorted(set(import_statements))
# Combine cleaned imports and remaining code
cleaned_code = '\n'.join(sorted_imports) + '\n\n' + code_without_imports.strip()
return cleaned_code
@router.post("/execute")
async def execute_code(
request_data: CodeExecuteRequest,
request: Request,
session_id: str = Depends(get_session_id_dependency)
):
"""
Execute code provided in the request against the session's dataframe
Args:
request_data: Body containing code to execute
request: FastAPI Request object
session_id: Session identifier
Returns:
Dictionary containing execution output and any plot outputs
"""
# Access app state via request
app_state = request.app.state
session_state = app_state.get_session_state(session_id)
if session_state["current_df"] is None:
raise HTTPException(
status_code=400,
detail="No dataset is currently loaded. Please link a dataset before executing code."
)
try:
code = request_data.code
if not code:
raise HTTPException(status_code=400, detail="No code provided")
# Execute the code with the dataframe from session state
output, json_outputs = execute_code_from_markdown(code, session_state["current_df"])
# Format plotly outputs for frontend
plotly_outputs = [f"```plotly\n{json_output}\n```\n" for json_output in json_outputs]
return {
"output": output,
"plotly_outputs": plotly_outputs if json_outputs else None
}
except Exception as e:
logger.log_message(f"Error executing code: {str(e)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail=str(e))
@router.post("/edit")
async def edit_code(
request_data: CodeEditRequest,
request: Request,
session_id: str = Depends(get_session_id_dependency)
):
"""
Edit code provided in the request using AI
Args:
request_data: Body containing original code and user prompt
request: FastAPI Request object
session_id: Session identifier
Returns:
Dictionary containing the edited code
"""
try:
# Check if code and prompt are provided
if not request_data.original_code or not request_data.user_prompt:
raise HTTPException(status_code=400, detail="Both original code and editing instructions are required")
# Access app state via request
app_state = request.app.state
session_state = app_state.get_session_state(session_id)
# Get dataset context
dataset_context = get_dataset_context(session_state["current_df"])
logger.log_message(f"Dataset context: {dataset_context}", level=logging.INFO)
logger.log_message(f"Original code: {request_data.original_code}", level=logging.INFO)
logger.log_message(f"User prompt: {request_data.user_prompt}", level=logging.INFO)
try:
# Use the configured language model with dataset context
edited_code = edit_code_with_dspy(
request_data.original_code,
request_data.user_prompt,
dataset_context
)
logger.log_message(f"Edited code: {edited_code}", level=logging.INFO)
edited_code = format_code_block(edited_code)
logger.log_message(f"Formatted edited code: {edited_code}", level=logging.INFO)
return {
"edited_code": edited_code,
}
except Exception as e:
# Fallback if DSPy models are not initialized or there's an error
logger.log_message(f"Error with DSPy models: {str(e)}", level=logging.ERROR)
# Return a helpful error message that doesn't expose implementation details
return {
"edited_code": request_data.original_code,
"error": "Could not process edit request. Please try again later."
}
except Exception as e:
logger.log_message(f"Error editing code: {str(e)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail=str(e))
@router.post("/fix")
async def fix_code(
request_data: CodeFixRequest,
request: Request,
session_id: str = Depends(get_session_id_dependency)
):
"""
Fix code with errors using block-by-block approach
Args:
request_data: Body containing code and error message
request: FastAPI Request object
session_id: Session identifier
Returns:
Dictionary containing the fixed code and information about fixed blocks
"""
try:
# Check if code and error are provided
if not request_data.code or not request_data.error:
raise HTTPException(status_code=400, detail="Both code and error message are required")
# Access app state via request
app_state = request.app.state
session_state = app_state.get_session_state(session_id)
# Get dataset context
dataset_context = get_dataset_context(session_state["current_df"])
try:
# Use the code_fix agent to fix the code, with dataset context
fixed_code = fix_code_with_dspy(
request_data.code,
request_data.error,
dataset_context
)
fixed_code = format_code_block(fixed_code)
return {
"fixed_code": fixed_code,
}
except Exception as e:
# Fallback if DSPy models are not initialized or there's an error
logger.log_message(f"Error with DSPy models: {str(e)}", level=logging.ERROR)
# Return a helpful error message that doesn't expose implementation details
return {
"fixed_code": request_data.code,
"error": "Could not process fix request. Please try again later."
}
except Exception as e:
logger.log_message(f"Error fixing code: {str(e)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail=str(e))
@router.post("/clean-code")
async def clean_code(
request_data: CodeCleanRequest,
request: Request,
session_id: str = Depends(get_session_id_dependency)
):
"""
Clean code provided in the request
Args:
request_data: Body containing code to clean
request: FastAPI Request object
session_id: Session identifier
Returns:
Dictionary containing the cleaned code
"""
try:
# Check if code is provided
if not request_data.code:
raise HTTPException(status_code=400, detail="Code is required")
# Clean the code using the format_code function
cleaned = format_code(request_data.code)
return {
"cleaned_code": cleaned,
}
except Exception as e:
logger.log_message(f"Error cleaning code: {str(e)}", level=logging.ERROR)
raise HTTPException(status_code=500, detail=str(e))