|
import os |
|
from huggingface_hub import login |
|
from transformers import BlipProcessor, BlipForConditionalGeneration |
|
from PIL import Image |
|
|
|
import gradio as gr |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
import spaces |
|
|
|
import requests |
|
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor |
|
from qwen_vl_utils import process_vision_info |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
hf_token = os.getenv('HF_AUTH_TOKEN') |
|
if not hf_token: |
|
raise ValueError("Hugging Face token is not set in the environment variables.") |
|
login(token=hf_token) |
|
|
|
|
|
|
|
|
|
processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") |
|
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large") |
|
processor1 = BlipProcessor.from_pretrained("noamrot/FuseCap") |
|
model2 = BlipForConditionalGeneration.from_pretrained("noamrot/FuseCap") |
|
pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium") |
|
model3 =model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
"prithivMLmods/Qwen2-VL-OCR-2B-Instruct", torch_dtype="auto", device_map="auto" |
|
) |
|
processor2 = AutoProcessor.from_pretrained("prithivMLmods/Qwen2-VL-OCR-2B-Instruct") |
|
|
|
|
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
pipe.to(device) |
|
model2.to(device) |
|
model.to(device) |
|
|
|
|
|
|
|
@spaces.GPU(duration=150) |
|
def generate_caption_and_image(image): |
|
img = image.convert("RGB") |
|
|
|
|
|
import random |
|
messages = [{"role": "user", "content": [{"type": "image", "image": img}, {"type": "text", "text": "Describe this Image"}]}] |
|
|
|
text = processor.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
image_inputs, video_inputs = process_vision_info(messages) |
|
inputs = processor( |
|
text=[text], |
|
images=image_inputs, |
|
videos=video_inputs, |
|
padding=True, |
|
return_tensors="pt", |
|
) |
|
inputs = inputs.to("cuda") |
|
generated_ids = model.generate(**inputs, max_new_tokens=128) |
|
generated_ids_trimmed = [ |
|
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) |
|
] |
|
result = processor.batch_decode( |
|
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False |
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
fabrics = ['cotton', 'silk', 'denim', 'linen', 'polyester', 'wool', 'velvet'] |
|
patterns = ['striped', 'floral', 'geometric', 'abstract', 'solid', 'polka dots'] |
|
textile_designs = ['woven texture', 'embroidery', 'printed fabric', 'hand-dyed', 'quilting'] |
|
|
|
|
|
selected_fabric = random.choice(fabrics) |
|
selected_pattern = random.choice(patterns) |
|
selected_textile_design = random.choice(textile_designs) |
|
text = "a picture of " |
|
inputs = processor(img, text, return_tensors="pt").to(device) |
|
|
|
out = model.generate(**inputs, num_beams = 3) |
|
|
|
|
|
|
|
caption2 = processor.decode(out[0], skip_special_tokens=True) |
|
|
|
|
|
inputs = processor(image, return_tensors="pt", padding=True, truncation=True, max_length=250) |
|
inputs = {key: val.to(device) for key, val in inputs.items()} |
|
out = model.generate(**inputs) |
|
caption1 = processor.decode(out[0], skip_special_tokens=True) |
|
|
|
prompt = f'''Create a highly realistic clothing item based on the following descriptions: The design should reflect {caption1} and {caption2}, blending both themes into a single, stylish, and modern piece of clothing. Incorporate highly realistic and high-quality textures that exude sophistication, with realistic fabric lighting and fine details. Subtly hint at {selected_fabric}, featuring a {selected_pattern} motif and a {selected_textile_design} style that harmoniously balances the essence of both captions.and {result} should be written on top of it''' |
|
|
|
|
|
|
|
|
|
generated_image = pipe(prompt).images[0] |
|
|
|
return prompt, generated_image |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generate_caption_and_image, |
|
inputs=gr.Image(type="pil", label="Upload Image"), |
|
outputs=[gr.Textbox(label="Generated Caption"), gr.Image(label="Generated Design")], |
|
live=True |
|
) |
|
iface.launch(share=True) |
|
|
|
|