Spaces:
Sleeping
Sleeping
| import spaces | |
| import gradio as gr | |
| from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast, LlavaForConditionalGeneration, TextIteratorStreamer | |
| import torch | |
| import torch.amp.autocast_mode | |
| from PIL import Image | |
| import torchvision.transforms.functional as TVF | |
| from threading import Thread | |
| from typing import Generator | |
| MODEL_PATH = "fancyfeast/260kxqt2-1199872-llava" | |
| TITLE = "<h1><center>EXPERIMENTAL MODEL 260kxqt2-1199872</center></h1>" | |
| DESCRIPTION = """ | |
| """ | |
| PLACEHOLDER = """ | |
| """ | |
| # Load model | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH, use_fast=True) | |
| assert isinstance(tokenizer, PreTrainedTokenizer) or isinstance(tokenizer, PreTrainedTokenizerFast), f"Expected PreTrainedTokenizer, got {type(tokenizer)}" | |
| model = LlavaForConditionalGeneration.from_pretrained(MODEL_PATH, torch_dtype="bfloat16", device_map=0) | |
| assert isinstance(model, LlavaForConditionalGeneration), f"Expected LlavaForConditionalGeneration, got {type(model)}" | |
| def trim_off_prompt(input_ids: list[int], eoh_id: int, eot_id: int) -> list[int]: | |
| # Trim off the prompt | |
| while True: | |
| try: | |
| i = input_ids.index(eoh_id) | |
| except ValueError: | |
| break | |
| input_ids = input_ids[i + 1:] | |
| # Trim off the end | |
| try: | |
| i = input_ids.index(eot_id) | |
| except ValueError: | |
| return input_ids | |
| return input_ids[:i] | |
| end_of_header_id = tokenizer.convert_tokens_to_ids("<|end_header_id|>") | |
| end_of_turn_id = tokenizer.convert_tokens_to_ids("<|eot_id|>") | |
| assert isinstance(end_of_header_id, int) and isinstance(end_of_turn_id, int) | |
| def chat_joycaption(message: dict, history, temperature: float, top_p: float, max_new_tokens: int, log_prompt: bool) -> Generator[str, None, None]: | |
| torch.cuda.empty_cache() | |
| chat_interface.chatbot_state | |
| # Prompts are always stripped in training for now | |
| prompt = message['text'].strip() | |
| # Load image | |
| if "files" not in message or len(message["files"]) != 1: | |
| yield "ERROR: This model requires exactly one image as input." | |
| return | |
| image = Image.open(message["files"][0]) | |
| # Log the prompt | |
| if log_prompt: | |
| print(f"Prompt: {prompt}") | |
| # Preprocess image | |
| # NOTE: I found the default processor for so400M to have worse results than just using PIL directly | |
| if image.size != (384, 384): | |
| image = image.resize((384, 384), Image.LANCZOS) | |
| image = image.convert("RGB") | |
| pixel_values = TVF.pil_to_tensor(image) | |
| convo = [ | |
| { | |
| "role": "system", | |
| "content": "You are JoyCaption, a helpful AI assistant with vision capabilities.", | |
| }, | |
| { | |
| "role": "user", | |
| "content": prompt, | |
| }, | |
| ] | |
| # Format the conversation | |
| convo_string = tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = True) | |
| assert isinstance(convo_string, str) | |
| # Tokenize the conversation | |
| convo_tokens = tokenizer.encode(convo_string, add_special_tokens=False, truncation=False) | |
| # Repeat the image tokens | |
| input_tokens = [] | |
| for token in convo_tokens: | |
| if token == model.config.image_token_index: | |
| input_tokens.extend([model.config.image_token_index] * model.config.image_seq_length) | |
| else: | |
| input_tokens.append(token) | |
| input_ids = torch.tensor(input_tokens, dtype=torch.long) | |
| attention_mask = torch.ones_like(input_ids) | |
| # Move to GPU | |
| input_ids = input_ids.unsqueeze(0).to("cuda") | |
| attention_mask = attention_mask.unsqueeze(0).to("cuda") | |
| pixel_values = pixel_values.unsqueeze(0).to("cuda") | |
| # Normalize the image | |
| pixel_values = pixel_values / 255.0 | |
| pixel_values = TVF.normalize(pixel_values, [0.5], [0.5]) | |
| pixel_values = pixel_values.to(torch.bfloat16) | |
| streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True) | |
| generate_kwargs = dict( | |
| input_ids=input_ids, | |
| pixel_values=pixel_values, | |
| attention_mask=attention_mask, | |
| max_new_tokens=max_new_tokens, | |
| do_sample=True, | |
| suppress_tokens=None, | |
| use_cache=True, | |
| temperature=temperature, | |
| top_k=None, | |
| top_p=top_p, | |
| streamer=streamer, | |
| ) | |
| if temperature == 0: | |
| generate_kwargs["do_sample"] = False | |
| t = Thread(target=model.generate, kwargs=generate_kwargs) | |
| t.start() | |
| outputs = [] | |
| for text in streamer: | |
| outputs.append(text) | |
| yield "".join(outputs) | |
| chatbot=gr.Chatbot(height=450, placeholder=PLACEHOLDER, label='Gradio ChatInterface', type="messages") | |
| textbox = gr.MultimodalTextbox(file_types=["image"], file_count="single") | |
| with gr.Blocks() as demo: | |
| gr.HTML(TITLE) | |
| chat_interface = gr.ChatInterface( | |
| fn=chat_joycaption, | |
| chatbot=chatbot, | |
| type="messages", | |
| fill_height=True, | |
| multimodal=True, | |
| textbox=textbox, | |
| additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=True, render=False), | |
| additional_inputs=[ | |
| gr.Slider(minimum=0, | |
| maximum=1, | |
| step=0.1, | |
| value=0.6, | |
| label="Temperature", | |
| render=False), | |
| gr.Slider(minimum=0, | |
| maximum=1, | |
| step=0.05, | |
| value=0.9, | |
| label="Top p", | |
| render=False), | |
| gr.Slider(minimum=8, | |
| maximum=4096, | |
| step=1, | |
| value=1024, | |
| label="Max new tokens", | |
| render=False ), | |
| gr.Checkbox(label="Help improve JoyCaption by logging your text query", value=True, render=False), | |
| ], | |
| ) | |
| gr.Markdown(DESCRIPTION) | |
| if __name__ == "__main__": | |
| demo.launch() |