FilipeR commited on
Commit
5995c77
1 Parent(s): 4c15121

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -18
app.py CHANGED
@@ -1,7 +1,4 @@
1
  #!/usr/bin/env python
2
- #patch 0.04
3
- #Func() Dalle Collage Moved Midjourney Space
4
- #Pruned DalleCollage Space
5
  import os
6
  import random
7
  import uuid
@@ -178,20 +175,14 @@ def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str
178
 
179
 
180
 
181
- DESCRIPTION = """## MidJourney
182
-
183
- Drop your best results in the community: [rb.gy/klkbs7](http://rb.gy/klkbs7), Have you tried the stable hamster space? [rb.gy/hfrm2f](http://rb.gy/hfrm2f)
184
  """
185
 
186
-
187
- if not torch.cuda.is_available():
188
- DESCRIPTION += "\n<p>⚠️Running on CPU, This may not work on CPU.</p>"
189
-
190
  MAX_SEED = np.iinfo(np.int32).max
191
- CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
192
  MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
193
- USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
194
- ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
195
 
196
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
197
 
@@ -208,11 +199,9 @@ if torch.cuda.is_available():
208
  pipe.enable_model_cpu_offload()
209
  else:
210
  pipe.to(device)
211
- print("Loaded on Device!")
212
 
213
  if USE_TORCH_COMPILE:
214
- pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
215
- print("Model Compiled!")
216
 
217
  def save_image(img, path):
218
  img.save(path)
@@ -232,8 +221,8 @@ def generate(
232
  filter_name: str = DEFAULT_FILTER_NAME,
233
  grid_size: str = "2x2",
234
  seed: int = 0,
235
- width: int = 1024,
236
- height: int = 1024,
237
  guidance_scale: float = 3,
238
  randomize_seed: bool = False,
239
  use_resolution_binning: bool = True,
 
1
  #!/usr/bin/env python
 
 
 
2
  import os
3
  import random
4
  import uuid
 
175
 
176
 
177
 
178
+ DESCRIPTION = """## CloneJourney
 
 
179
  """
180
 
 
 
 
 
181
  MAX_SEED = np.iinfo(np.int32).max
182
+ CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "lazy")
183
  MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
184
+ USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "1") == "1"
185
+ ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "1") == "1"
186
 
187
  device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
188
 
 
199
  pipe.enable_model_cpu_offload()
200
  else:
201
  pipe.to(device)
 
202
 
203
  if USE_TORCH_COMPILE:
204
+ pipe.unet = torch.compile(pipe.unet, mode="max-autotune", fullgraph=True)
 
205
 
206
  def save_image(img, path):
207
  img.save(path)
 
221
  filter_name: str = DEFAULT_FILTER_NAME,
222
  grid_size: str = "2x2",
223
  seed: int = 0,
224
+ width: int = 896,
225
+ height: int = 1152,
226
  guidance_scale: float = 3,
227
  randomize_seed: bool = False,
228
  use_resolution_binning: bool = True,