Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -40,7 +40,7 @@ def generate_importance_matrix(model_path, train_data_path):
|
|
40 |
try:
|
41 |
process.wait(timeout=5) # grace period
|
42 |
except subprocess.TimeoutExpired:
|
43 |
-
print("Imatrix proc still didn't term.
|
44 |
process.kill()
|
45 |
|
46 |
os.chdir("..")
|
@@ -96,22 +96,27 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
96 |
try:
|
97 |
api = HfApi(token=oauth_token.token)
|
98 |
|
|
|
99 |
dl_pattern = ["*.md", "*.json", "*.model"]
|
100 |
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
|
|
|
|
|
|
|
|
115 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
116 |
print("Model downloaded successfully!")
|
117 |
print(f"Current working directory: {os.getcwd()}")
|
@@ -155,7 +160,7 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
155 |
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
156 |
print(f"Quantized model path: {quantized_gguf_path}")
|
157 |
|
158 |
-
#
|
159 |
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
160 |
new_repo_id = new_repo_url.repo_id
|
161 |
print("Repo created successfully!", new_repo_url)
|
@@ -201,178 +206,83 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
201 |
```
|
202 |
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
203 |
```
|
204 |
-
cd llama.cpp
|
205 |
```
|
206 |
-
Step 3:
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
or
|
211 |
-
```
|
212 |
-
./llama-server --hf-repo {new_repo_id} --hf-file {quantized_gguf_name} -c 2048
|
213 |
```
|
|
|
|
|
|
|
|
|
214 |
"""
|
215 |
)
|
216 |
-
card.save(f"README.md")
|
217 |
-
|
218 |
-
if split_model:
|
219 |
-
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
220 |
-
else:
|
221 |
-
try:
|
222 |
-
print(f"Uploading quantized model: {quantized_gguf_path}")
|
223 |
-
api.upload_file(
|
224 |
-
path_or_fileobj=quantized_gguf_path,
|
225 |
-
path_in_repo=quantized_gguf_name,
|
226 |
-
repo_id=new_repo_id,
|
227 |
-
)
|
228 |
-
except Exception as e:
|
229 |
-
raise Exception(f"Error uploading quantized model: {e}")
|
230 |
-
|
231 |
-
|
232 |
-
imatrix_path = "llama.cpp/imatrix.dat"
|
233 |
-
if os.path.isfile(imatrix_path):
|
234 |
-
try:
|
235 |
-
print(f"Uploading imatrix.dat: {imatrix_path}")
|
236 |
-
api.upload_file(
|
237 |
-
path_or_fileobj=imatrix_path,
|
238 |
-
path_in_repo="imatrix.dat",
|
239 |
-
repo_id=new_repo_id,
|
240 |
-
)
|
241 |
-
except Exception as e:
|
242 |
-
raise Exception(f"Error uploading imatrix.dat: {e}")
|
243 |
|
|
|
244 |
api.upload_file(
|
245 |
-
path_or_fileobj=
|
246 |
-
path_in_repo=
|
247 |
repo_id=new_repo_id,
|
248 |
)
|
249 |
-
print(
|
250 |
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
.
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
model_id = HuggingfaceHubSearch(
|
270 |
-
label="Hub Model ID",
|
271 |
-
placeholder="Search for model id on Huggingface",
|
272 |
-
search_type="model",
|
273 |
-
)
|
274 |
-
|
275 |
-
q_method = gr.Dropdown(
|
276 |
-
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
277 |
-
label="Quantization Method",
|
278 |
-
info="GGML quantization type",
|
279 |
-
value="Q4_K_M",
|
280 |
-
filterable=False,
|
281 |
-
visible=True
|
282 |
-
)
|
283 |
-
|
284 |
-
imatrix_q_method = gr.Dropdown(
|
285 |
-
["IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
286 |
-
label="Imatrix Quantization Method",
|
287 |
-
info="GGML imatrix quants type",
|
288 |
-
value="IQ4_NL",
|
289 |
-
filterable=False,
|
290 |
-
visible=False
|
291 |
-
)
|
292 |
-
|
293 |
-
use_imatrix = gr.Checkbox(
|
294 |
-
value=False,
|
295 |
-
label="Use Imatrix Quantization",
|
296 |
-
info="Use importance matrix for quantization."
|
297 |
-
)
|
298 |
-
|
299 |
-
private_repo = gr.Checkbox(
|
300 |
-
value=False,
|
301 |
-
label="Private Repo",
|
302 |
-
info="Create a private repo under your username."
|
303 |
-
)
|
304 |
-
|
305 |
-
train_data_file = gr.File(
|
306 |
-
label="Training Data File",
|
307 |
-
file_types=["txt"],
|
308 |
-
visible=False
|
309 |
-
)
|
310 |
-
|
311 |
-
split_model = gr.Checkbox(
|
312 |
-
value=False,
|
313 |
-
label="Split Model",
|
314 |
-
info="Shard the model using gguf-split."
|
315 |
-
)
|
316 |
-
|
317 |
-
split_max_tensors = gr.Number(
|
318 |
-
value=256,
|
319 |
-
label="Max Tensors per File",
|
320 |
-
info="Maximum number of tensors per file when splitting model.",
|
321 |
-
visible=False
|
322 |
-
)
|
323 |
-
|
324 |
-
split_max_size = gr.Textbox(
|
325 |
-
label="Max File Size",
|
326 |
-
info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.",
|
327 |
-
visible=False
|
328 |
-
)
|
329 |
-
|
330 |
-
def update_visibility(use_imatrix):
|
331 |
-
return gr.update(visible=not use_imatrix), gr.update(visible=use_imatrix), gr.update(visible=use_imatrix)
|
332 |
-
|
333 |
-
use_imatrix.change(
|
334 |
-
fn=update_visibility,
|
335 |
-
inputs=use_imatrix,
|
336 |
-
outputs=[q_method, imatrix_q_method, train_data_file]
|
337 |
-
)
|
338 |
-
|
339 |
-
iface = gr.Interface(
|
340 |
-
fn=process_model,
|
341 |
-
inputs=[
|
342 |
-
model_id,
|
343 |
-
q_method,
|
344 |
-
use_imatrix,
|
345 |
-
imatrix_q_method,
|
346 |
-
private_repo,
|
347 |
-
train_data_file,
|
348 |
-
split_model,
|
349 |
-
split_max_tensors,
|
350 |
-
split_max_size,
|
351 |
-
],
|
352 |
-
outputs=[
|
353 |
-
gr.Markdown(label="output"),
|
354 |
-
gr.Image(show_label=False),
|
355 |
-
],
|
356 |
-
title="Create your own GGUF Quants, blazingly fast ⚡!",
|
357 |
-
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
|
358 |
-
api_name=False
|
359 |
-
)
|
360 |
-
|
361 |
-
def update_split_visibility(split_model):
|
362 |
-
return gr.update(visible=split_model), gr.update(visible=split_model)
|
363 |
-
|
364 |
-
split_model.change(
|
365 |
-
fn=update_split_visibility,
|
366 |
-
inputs=split_model,
|
367 |
-
outputs=[split_max_tensors, split_max_size]
|
368 |
-
)
|
369 |
|
370 |
-
|
371 |
-
|
372 |
|
373 |
-
|
374 |
-
|
375 |
-
scheduler.start()
|
376 |
|
377 |
-
|
378 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
try:
|
41 |
process.wait(timeout=5) # grace period
|
42 |
except subprocess.TimeoutExpired:
|
43 |
+
print("Imatrix proc still didn't term. Forcefully terminating process...")
|
44 |
process.kill()
|
45 |
|
46 |
os.chdir("..")
|
|
|
96 |
try:
|
97 |
api = HfApi(token=oauth_token.token)
|
98 |
|
99 |
+
# Descargar el modelo completo
|
100 |
dl_pattern = ["*.md", "*.json", "*.model"]
|
101 |
|
102 |
+
# Añadir soporte para distintos tipos de modelos (texto, imagen, audio, etc.)
|
103 |
+
model_types = [
|
104 |
+
"*.safetensors",
|
105 |
+
"*.bin",
|
106 |
+
"*.pt",
|
107 |
+
"*.onnx",
|
108 |
+
"*.h5",
|
109 |
+
"*.tflite",
|
110 |
+
"*.ckpt",
|
111 |
+
"*.pb",
|
112 |
+
"*.tar",
|
113 |
+
"*.xml",
|
114 |
+
"*.caffemodel",
|
115 |
+
]
|
116 |
+
|
117 |
+
dl_pattern.extend(model_types)
|
118 |
+
|
119 |
+
# Descargar todos los archivos relevantes del modelo
|
120 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
121 |
print("Model downloaded successfully!")
|
122 |
print(f"Current working directory: {os.getcwd()}")
|
|
|
160 |
print(f"Quantized successfully with {imatrix_q_method if use_imatrix else q_method} option!")
|
161 |
print(f"Quantized model path: {quantized_gguf_path}")
|
162 |
|
163 |
+
# Crear repositorio vacío
|
164 |
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
165 |
new_repo_id = new_repo_url.repo_id
|
166 |
print("Repo created successfully!", new_repo_url)
|
|
|
206 |
```
|
207 |
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
|
208 |
```
|
209 |
+
cd llama.cpp
|
210 |
```
|
211 |
+
Step 3: Quantize your downloaded fp16 model into a gguf for inference.
|
212 |
+
|
213 |
+
```bash
|
214 |
+
./llama.cpp/convert-hf-to-gguf.py /path/to/your/hf-model --outtype f16 --outfile llama.gguf
|
|
|
|
|
|
|
215 |
```
|
216 |
+
## License
|
217 |
+
{card.data.license if card.data.license else "The original license applied to the model {model_id}"}
|
218 |
+
## Limitations and Biases
|
219 |
+
The original limitations and biases of the model {model_id} apply to this quantized GGUF model as well.
|
220 |
"""
|
221 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
222 |
|
223 |
+
# Subir la tarjeta del modelo
|
224 |
api.upload_file(
|
225 |
+
path_or_fileobj=card.to_json_string().encode("utf-8"),
|
226 |
+
path_in_repo="README.md",
|
227 |
repo_id=new_repo_id,
|
228 |
)
|
229 |
+
print("Model card uploaded!")
|
230 |
|
231 |
+
# Verifica si se debe hacer split del modelo
|
232 |
+
if split_model:
|
233 |
+
split_upload_model(
|
234 |
+
model_path=quantized_gguf_path,
|
235 |
+
repo_id=new_repo_id,
|
236 |
+
oauth_token=oauth_token,
|
237 |
+
split_max_tensors=split_max_tensors,
|
238 |
+
split_max_size=split_max_size
|
239 |
+
)
|
240 |
+
else:
|
241 |
+
print(f"Uploading quantized model to {new_repo_id}...")
|
242 |
+
api.upload_file(
|
243 |
+
path_or_fileobj=quantized_gguf_path,
|
244 |
+
path_in_repo=quantized_gguf_name,
|
245 |
+
repo_id=new_repo_id,
|
246 |
+
)
|
247 |
+
print("Model uploaded successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
248 |
|
249 |
+
shutil.rmtree(model_name)
|
250 |
+
print("Cleaned up local files.")
|
251 |
|
252 |
+
print(f"Process completed successfully! Your quantized GGUF model is available at: https://huggingface.co/{new_repo_id}")
|
253 |
+
return f"Model successfully quantized and uploaded to {new_repo_id}!"
|
|
|
254 |
|
255 |
+
except Exception as e:
|
256 |
+
print(f"Exception during processing: {e}")
|
257 |
+
return f"An error occurred: {str(e)}"
|
258 |
+
|
259 |
+
def setup_scheduler():
|
260 |
+
scheduler = BackgroundScheduler()
|
261 |
+
scheduler.add_job(restart_space, 'interval', hours=6)
|
262 |
+
scheduler.start()
|
263 |
+
|
264 |
+
def restart_space():
|
265 |
+
api = HfApi(token=HF_TOKEN)
|
266 |
+
api.restart_space(repo_id="ggml-org/gguf-my-repo", hardware="cpu-basic")
|
267 |
+
print("Space restarted successfully!")
|
268 |
+
|
269 |
+
# Setup Gradio interface with updated support
|
270 |
+
with gr.Blocks() as demo:
|
271 |
+
model_id = HuggingfaceHubSearch(label="Select a model from HuggingFace Hub").launch()
|
272 |
+
q_method = gr.Dropdown(choices=["q4_0", "q4_1", "q5_0", "q5_1", "q8_0"], label="Quantization method")
|
273 |
+
use_imatrix = gr.Checkbox(label="Use imatrix quantization")
|
274 |
+
imatrix_q_method = gr.Dropdown(choices=["q4_0", "q4_1", "q5_0", "q5_1", "q8_0"], label="Imatrix Quantization method", visible=False)
|
275 |
+
train_data_file = gr.File(label="Upload calibration dataset for imatrix")
|
276 |
+
private_repo = gr.Checkbox(label="Make repo private")
|
277 |
+
split_model = gr.Checkbox(label="Split model before uploading")
|
278 |
+
split_max_tensors = gr.Slider(minimum=128, maximum=4096, step=128, value=256, label="Max tensors per split")
|
279 |
+
split_max_size = gr.Number(value=None, label="Max size per split (in MB)")
|
280 |
+
output = gr.Textbox(label="Output")
|
281 |
+
oauth_token = gr.OAuth(HF_TOKEN)
|
282 |
+
process_button = gr.Button(value="Process Model")
|
283 |
+
process_button.click(process_model, inputs=[model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token], outputs=output)
|
284 |
+
use_imatrix.change(lambda val: gr.update(visible=val), inputs=use_imatrix, outputs=imatrix_q_method)
|
285 |
+
|
286 |
+
setup_scheduler()
|
287 |
+
|
288 |
+
demo.launch()
|