Ffftdtd5dtft commited on
Commit
1af6864
·
verified ·
1 Parent(s): fe26d94

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +416 -30
app.py CHANGED
@@ -5,43 +5,70 @@ import signal
5
  import time
6
  import torch
7
  from torch.nn.utils import prune
8
- from transformers import GPT2LMHeadModel, AutoTokenizer, AutoModelForCausalLM, DistilBertModel
9
  from huggingface_hub import create_repo, HfApi, snapshot_download, whoami, ModelCard
10
  from gradio_huggingfacehub_search import HuggingfaceHubSearch
11
  from apscheduler.schedulers.background import BackgroundScheduler
12
  from textwrap import dedent
13
  import gradio as gr
 
 
 
 
 
14
 
15
  os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
16
  HF_TOKEN = os.environ.get("HF_TOKEN")
17
 
18
  def generate_importance_matrix(model_path, train_data_path):
19
- imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
20
  os.chdir("llama.cpp")
 
 
21
  if not os.path.isfile(f"../{model_path}"):
22
  raise Exception(f"Model file not found: {model_path}")
 
 
 
 
 
23
  process = subprocess.Popen(imatrix_command, shell=True)
24
  try:
25
- process.wait(timeout=60)
26
  except subprocess.TimeoutExpired:
 
27
  process.send_signal(signal.SIGINT)
28
  try:
29
- process.wait(timeout=5)
30
  except subprocess.TimeoutExpired:
 
31
  process.kill()
 
 
32
  os.chdir("..")
33
 
34
  def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256, split_max_size=None):
 
35
  if oauth_token.token is None:
36
  raise ValueError("You have to be logged in.")
 
 
37
  split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
38
  if split_max_size:
39
  split_cmd += f" --split-max-size {split_max_size}"
40
  split_cmd += f" {model_path} {model_path.split('.')[0]}"
 
 
41
  result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
 
 
42
  if result.returncode != 0:
43
  raise Exception(f"Error splitting the model: {result.stderr}")
 
 
44
  sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
 
 
45
  if sharded_model_files:
46
  api = HfApi(token=oauth_token.token)
47
  for file in sharded_model_files:
@@ -54,113 +81,431 @@ def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256,
54
  raise Exception("No sharded files found.")
55
 
56
  def prune_model(model, amount=0.5):
 
57
  for name, module in model.named_modules():
58
  if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)):
 
59
  prune.l1_unstructured(module, name='weight', amount=amount)
 
60
  prune.remove(module, 'weight')
61
  return model
62
 
63
  def quantize_to_q1_with_min(tensor, min_value=-1):
 
64
  tensor = torch.sign(tensor)
65
  tensor[tensor < min_value] = min_value
66
  return tensor
67
 
68
  def quantize_model_to_q1_with_min(model, min_value=-1):
 
69
  for name, param in model.named_parameters():
70
  if param.dtype in [torch.float32, torch.float16]:
71
  with torch.no_grad():
72
  param.copy_(quantize_to_q1_with_min(param.data, min_value))
73
 
74
  def disable_unnecessary_components(model):
 
75
  for name, module in model.named_modules():
76
  if isinstance(module, torch.nn.Dropout):
 
77
  module.p = 0.0
78
  elif isinstance(module, torch.nn.BatchNorm1d):
 
79
  module.eval()
80
 
81
  def ultra_max_compress(model):
82
- model = prune_model(model, amount=0.8)
83
- quantize_model_to_q1_with_min(model, min_value=-0.05)
84
- disable_unnecessary_components(model)
 
 
85
  with torch.no_grad():
86
  for name, param in model.named_parameters():
87
  if param.requires_grad:
88
  param.requires_grad = False
89
- param.data = torch.nn.functional.hardtanh(param.data, min_val=-1.0, max_val=1.0)
90
- param.data = param.data.half()
 
91
  try:
 
92
  model = torch.jit.script(model)
93
  except Exception:
94
  pass
95
- prune_model(model, amount=0.9)
96
- model.eval()
 
 
 
97
  for buffer_name, buffer in model.named_buffers():
98
  if buffer.numel() == 0:
99
  model._buffers.pop(buffer_name)
 
100
  return model
101
 
102
  def optimize_model_resources(model):
 
103
  torch.set_grad_enabled(False)
 
 
104
  model.eval()
 
 
105
  for name, param in model.named_parameters():
106
  param.requires_grad = False
107
  if param.dtype == torch.float32:
108
  param.data = param.data.half()
 
 
109
  if hasattr(model, 'config'):
110
  if hasattr(model.config, 'max_position_embeddings'):
 
111
  model.config.max_position_embeddings = min(model.config.max_position_embeddings, 512)
112
  if hasattr(model.config, 'hidden_size'):
 
113
  model.config.hidden_size = min(model.config.hidden_size, 768)
 
 
114
  model = torch.jit.optimize_for_inference(model)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
  return model
116
 
117
- def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size, oauth_token: gr.OAuthToken | None):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
118
  if oauth_token.token is None:
119
  raise ValueError("You must be logged in to use GGUF-my-repo")
 
 
120
  model_name = model_id.split('/')[-1]
 
121
  fp16 = f"{model_name}.fp16.gguf"
122
 
123
  try:
 
124
  api = HfApi(token=oauth_token.token)
 
 
125
  dl_pattern = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel", "*.md", "*.json", "*.model"]
126
  pattern = "*.safetensors" if any(file.path.endswith(".safetensors") for file in api.list_repo_tree(repo_id=model_id, recursive=True)) else "*.bin"
127
  dl_pattern += pattern
 
 
128
  api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
 
 
129
  conversion_script = "convert_hf_to_gguf.py"
130
  fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
 
 
131
  result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
 
 
132
  if result.returncode != 0:
133
  raise Exception(f"Error converting to fp16: {result.stderr}")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
134
  imatrix_path = "llama.cpp/imatrix.dat"
 
 
135
  if use_imatrix:
136
  if train_data_file:
137
  train_data_path = train_data_file.name
138
  else:
139
  train_data_path = "groups_merged.txt"
 
140
  if not os.path.isfile(train_data_path):
141
  raise Exception(f"Training data file not found: {train_data_path}")
 
142
  generate_importance_matrix(fp16, train_data_path)
 
 
143
  username = whoami(oauth_token.token)["name"]
 
 
144
  quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
145
  quantized_gguf_path = quantized_gguf_name
 
 
146
  if use_imatrix:
147
  quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
148
  else:
149
  quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
 
 
150
  result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
 
 
151
  if result.returncode != 0:
152
  raise Exception(f"Error quantizing: {result.stderr}")
 
 
 
 
 
 
 
 
 
153
  new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
154
  new_repo_id = new_repo_url.repo_id
 
 
155
  try:
156
  card = ModelCard.load(model_id, token=oauth_token.token)
157
  except:
 
158
  card = ModelCard("")
 
 
159
  if card.data.tags is None:
160
  card.data.tags = []
161
  card.data.tags.append("llama-cpp")
162
  card.data.tags.append("gguf-my-repo")
 
 
163
  card.data.base_model = model_id
 
 
164
  card.text = dedent(
165
  f"""
166
  # {new_repo_id}
@@ -205,8 +550,10 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
205
  ```
206
  """
207
  )
 
208
  card.save(f"README.md")
209
 
 
210
  if split_model:
211
  split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
212
  else:
@@ -215,66 +562,105 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
215
  except Exception as e:
216
  raise Exception(f"Error uploading quantized model: {e}")
217
 
 
218
  if os.path.isfile(imatrix_path):
219
  try:
220
  api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=new_repo_id)
221
  except Exception as e:
222
  raise Exception(f"Error uploading imatrix.dat: {e}")
223
 
 
224
  api.upload_file(path_or_fileobj=f"README.md", path_in_repo=f"README.md", repo_id=new_repo_id)
 
 
225
  return (f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', "llama.png")
226
  except Exception as e:
 
227
  return (f"Error: {e}", "error.png")
228
  finally:
 
229
  shutil.rmtree(model_name, ignore_errors=True)
230
 
 
231
  css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;}"""
 
 
232
  with gr.Blocks(css=css) as demo:
 
233
  gr.Markdown("You must be logged in to use GGUF-my-repo.")
 
234
  gr.LoginButton(min_width=250)
 
235
  model_id = HuggingfaceHubSearch(label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model")
236
- q_method = gr.Dropdown(["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"], label="Quantization Method", info="GGML quantization type", value="Q2_K", filterable=False, visible=True)
237
- imatrix_q_method = gr.Dropdown(["IQ1", "IQ1_S", "IQ1_XXS", "IQ2_S", "IQ2_XXS", "IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"], label="Imatrix Quantization Method", info="GGML imatrix quants type", value="IQ4_NL", filterable=False, visible=False)
 
 
 
 
 
 
 
238
  use_imatrix = gr.Checkbox(value=False, label="Use Imatrix Quantization", info="Use importance matrix for quantization.")
239
- private_repo = gr.Checkbox(value=False, label="Private Repo", info="Create a private repo under your username.")
240
  train_data_file = gr.File(label="Training Data File", file_types=["txt"], visible=False)
 
 
 
 
 
241
  split_model = gr.Checkbox(value=False, label="Split Model", info="Shard the model using gguf-split.")
 
242
  split_max_tensors = gr.Number(value=256, label="Max Tensors per File", info="Maximum number of tensors per file when splitting model.", visible=False)
 
243
  split_max_size = gr.Textbox(label="Max File Size", info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.", visible=False)
244
 
 
 
245
  use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=not use_imatrix), inputs=use_imatrix, outputs=q_method)
 
246
  use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=imatrix_q_method)
 
247
  use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=train_data_file)
 
248
  split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_tensors)
 
249
  split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_size)
250
 
 
251
  iface = gr.Interface(
252
- fn=process_model,
253
  inputs=[
254
- model_id,
255
- q_method,
256
- use_imatrix,
257
- imatrix_q_method,
258
- private_repo,
259
- train_data_file,
260
- split_model,
261
- split_max_tensors,
262
- split_max_size,
263
  ],
264
  outputs=[
265
- gr.Markdown(label="output"),
266
- gr.Image(show_label=False),
267
  ],
268
- title="Create your own GGUF Quants, blazingly fast ⚡!",
269
- description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
270
- api_name=False
271
  )
272
 
 
273
  def restart_space():
 
274
  HfApi().restart_space(repo_id="Ffftdtd5dtft/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
275
 
 
276
  scheduler = BackgroundScheduler()
 
277
  scheduler.add_job(restart_space, "interval", seconds=21600)
 
278
  scheduler.start()
279
 
 
280
  demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
 
5
  import time
6
  import torch
7
  from torch.nn.utils import prune
8
+ from transformers import GPT2LMHeadModel, AutoTokenizer, AutoModelForCausalLM, DistilBertModel, AutoConfig
9
  from huggingface_hub import create_repo, HfApi, snapshot_download, whoami, ModelCard
10
  from gradio_huggingfacehub_search import HuggingfaceHubSearch
11
  from apscheduler.schedulers.background import BackgroundScheduler
12
  from textwrap import dedent
13
  import gradio as gr
14
+ import torch.quantization
15
+ from torch.nn import functional as F
16
+ from copy import deepcopy
17
+ from torch.utils.checkpoint import checkpoint
18
+ import hashlib
19
 
20
  os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
21
  HF_TOKEN = os.environ.get("HF_TOKEN")
22
 
23
  def generate_importance_matrix(model_path, train_data_path):
24
+ # Change the working directory to the llama.cpp directory
25
  os.chdir("llama.cpp")
26
+
27
+ # Check if the model file exists
28
  if not os.path.isfile(f"../{model_path}"):
29
  raise Exception(f"Model file not found: {model_path}")
30
+
31
+ # Construct the command to generate the importance matrix
32
+ imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
33
+
34
+ # Execute the command and wait for it to finish
35
  process = subprocess.Popen(imatrix_command, shell=True)
36
  try:
37
+ process.wait(timeout=0)
38
  except subprocess.TimeoutExpired:
39
+ # If the process takes too long, send a SIGINT signal (interrupt)
40
  process.send_signal(signal.SIGINT)
41
  try:
42
+ process.wait(timeout=0)
43
  except subprocess.TimeoutExpired:
44
+ # If it still doesn't finish, kill the process
45
  process.kill()
46
+
47
+ # Change the working directory back to the parent directory
48
  os.chdir("..")
49
 
50
  def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256, split_max_size=None):
51
+ # Check if the user is logged in
52
  if oauth_token.token is None:
53
  raise ValueError("You have to be logged in.")
54
+
55
+ # Construct the command to split the model
56
  split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
57
  if split_max_size:
58
  split_cmd += f" --split-max-size {split_max_size}"
59
  split_cmd += f" {model_path} {model_path.split('.')[0]}"
60
+
61
+ # Execute the command and capture the output
62
  result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
63
+
64
+ # Check if the command was successful
65
  if result.returncode != 0:
66
  raise Exception(f"Error splitting the model: {result.stderr}")
67
+
68
+ # Get a list of sharded model files
69
  sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
70
+
71
+ # If sharded files were found, upload them to the Hugging Face repository
72
  if sharded_model_files:
73
  api = HfApi(token=oauth_token.token)
74
  for file in sharded_model_files:
 
81
  raise Exception("No sharded files found.")
82
 
83
  def prune_model(model, amount=0.5):
84
+ # Iterate over the model's modules and apply pruning to linear and convolutional layers
85
  for name, module in model.named_modules():
86
  if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)):
87
+ # Apply L1 unstructured pruning
88
  prune.l1_unstructured(module, name='weight', amount=amount)
89
+ # Remove the pruned weights
90
  prune.remove(module, 'weight')
91
  return model
92
 
93
  def quantize_to_q1_with_min(tensor, min_value=-1):
94
+ # Quantize the tensor to -1, 0, or 1 based on the sign and minimum value
95
  tensor = torch.sign(tensor)
96
  tensor[tensor < min_value] = min_value
97
  return tensor
98
 
99
  def quantize_model_to_q1_with_min(model, min_value=-1):
100
+ # Iterate over the model's parameters and apply quantization
101
  for name, param in model.named_parameters():
102
  if param.dtype in [torch.float32, torch.float16]:
103
  with torch.no_grad():
104
  param.copy_(quantize_to_q1_with_min(param.data, min_value))
105
 
106
  def disable_unnecessary_components(model):
107
+ # Iterate over the model's modules and disable dropout and batch normalization
108
  for name, module in model.named_modules():
109
  if isinstance(module, torch.nn.Dropout):
110
+ # Set dropout probability to 0
111
  module.p = 0.0
112
  elif isinstance(module, torch.nn.BatchNorm1d):
113
+ # Set batch normalization to evaluation mode
114
  module.eval()
115
 
116
  def ultra_max_compress(model):
117
+ # Apply a series of aggressive optimization techniques to the model
118
+ model = prune_model(model, amount=0.8) # Prune 80% of the weights
119
+ quantize_model_to_q1_with_min(model, min_value=-0.05) # Quantize weights to -1, 0, or 1
120
+ disable_unnecessary_components(model) # Disable dropout and batch normalization
121
+
122
  with torch.no_grad():
123
  for name, param in model.named_parameters():
124
  if param.requires_grad:
125
  param.requires_grad = False
126
+ param.data = torch.nn.functional.hardtanh(param.data, min_val=-1.0, max_val=1.0) # Apply hardtanh activation
127
+ param.data = param.data.half() # Convert weights to half precision
128
+
129
  try:
130
+ # Attempt to convert the model to a TorchScript module
131
  model = torch.jit.script(model)
132
  except Exception:
133
  pass
134
+
135
+ model = prune_model(model, amount=0.9) # Prune another 90% of the weights
136
+ model.eval() # Set the model to evaluation mode
137
+
138
+ # Remove empty buffers from the model
139
  for buffer_name, buffer in model.named_buffers():
140
  if buffer.numel() == 0:
141
  model._buffers.pop(buffer_name)
142
+
143
  return model
144
 
145
  def optimize_model_resources(model):
146
+ # Disable gradient calculations
147
  torch.set_grad_enabled(False)
148
+
149
+ # Set the model to evaluation mode
150
  model.eval()
151
+
152
+ # Iterate over the model's parameters and convert float32 weights to half precision
153
  for name, param in model.named_parameters():
154
  param.requires_grad = False
155
  if param.dtype == torch.float32:
156
  param.data = param.data.half()
157
+
158
+ # Adjust model configuration for resource optimization
159
  if hasattr(model, 'config'):
160
  if hasattr(model.config, 'max_position_embeddings'):
161
+ # Limit the maximum position embeddings to 512
162
  model.config.max_position_embeddings = min(model.config.max_position_embeddings, 512)
163
  if hasattr(model.config, 'hidden_size'):
164
+ # Limit the hidden size to 768
165
  model.config.hidden_size = min(model.config.hidden_size, 768)
166
+
167
+ # Optimize the model for inference using TorchScript
168
  model = torch.jit.optimize_for_inference(model)
169
+
170
+ return model
171
+
172
+ def aggressive_optimize(model, reduce_layers_factor=0.5):
173
+ # Reduce the number of attention heads and hidden size based on the reduction factor
174
+ if hasattr(model.config, 'num_attention_heads'):
175
+ model.config.num_attention_heads = int(model.config.num_attention_heads * reduce_layers_factor)
176
+ if hasattr(model.config, 'hidden_size'):
177
+ model.config.hidden_size = int(model.config.hidden_size * reduce_layers_factor)
178
+ return model
179
+
180
+ def apply_quantization(model, use_int8_inference):
181
+ # Apply dynamic quantization to linear layers if INT8 inference is enabled
182
+ if use_int8_inference:
183
+ quantized_model = torch.quantization.quantize_dynamic(
184
+ model, {torch.nn.Linear}, dtype=torch.qint8
185
+ )
186
+ return quantized_model
187
+ else:
188
+ return model
189
+
190
+ def reduce_layers(model, reduction_factor=0.5):
191
+ # Reduce the number of layers in the transformer block
192
+ if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
193
+ original_num_layers = len(model.transformer.h)
194
+ new_num_layers = int(original_num_layers * reduction_factor)
195
+ model.transformer.h = torch.nn.ModuleList(model.transformer.h[:new_num_layers])
196
+ return model
197
+
198
+ def use_smaller_embeddings(model, reduction_factor=0.75):
199
+ # Reduce the size of the embedding layer
200
+ original_embedding_dim = model.config.hidden_size
201
+ new_embedding_dim = int(original_embedding_dim * reduction_factor)
202
+ model.config.hidden_size = new_embedding_dim
203
+ model.resize_token_embeddings(int(model.config.vocab_size * reduction_factor))
204
+ return model
205
+
206
+ def use_fp16_embeddings(model):
207
+ # Convert the embedding weights to half precision (float16)
208
+ model.transformer.wte = model.transformer.wte.half()
209
+ return model
210
+
211
+ def quantize_embeddings(model):
212
+ # Quantize the embedding layer using dynamic quantization
213
+ model.transformer.wte = torch.quantization.quantize_dynamic(
214
+ model.transformer.wte, {torch.nn.Embedding}, dtype=torch.qint8
215
+ )
216
+ return model
217
+
218
+ def use_bnb_f16(model):
219
+ # Convert the model to BFLOAT16 (BF16) data type if supported by the hardware
220
+ if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
221
+ model = model.to(dtype=torch.bfloat16)
222
+ return model
223
+
224
+ def use_group_quantization(model):
225
+ # Apply group quantization to linear layers in the model
226
+ for module in model.modules():
227
+ if isinstance(module, torch.nn.Linear):
228
+ # Fuse the linear layer's weight
229
+ torch.quantization.fuse_modules(module, ['weight'], inplace=True)
230
+ # Quantize the fused linear layer using dynamic quantization
231
+ torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
232
+ return model
233
+
234
+ def apply_layer_norm_trick(model):
235
+ # Disable learnable parameters (elementwise_affine) in LayerNorm layers
236
+ for name, module in model.named_modules():
237
+ if isinstance(module, torch.nn.LayerNorm):
238
+ module.elementwise_affine = False
239
+ return model
240
+
241
+ def remove_padding(inputs, attention_mask):
242
+ # Remove padding from input sequences based on the attention mask
243
+ last_non_padded = attention_mask.sum(dim=1) - 1 # Find the last non-padded token in each sequence
244
+ gathered_inputs = torch.gather(inputs, dim=1, index=last_non_padded.unsqueeze(1).unsqueeze(2).expand(-1, -1, inputs.size(2))) # Gather the non-padded tokens
245
+ return gathered_inputs
246
+
247
+ def use_selective_quantization(model):
248
+ # Apply dynamic quantization to multi-head attention layers
249
+ for module in model.modules():
250
+ if isinstance(module, torch.nn.MultiheadAttention):
251
+ torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
252
+ return model
253
+
254
+ def use_mixed_precision(model):
255
+ # Convert the embedding weights to half precision (float16)
256
+ model.transformer.wte = model.transformer.wte.half()
257
+ return model
258
+
259
+ def use_pruning_after_training(model, prune_amount=0.1):
260
+ # Apply pruning to the model after training
261
+ model = prune_model(model, amount=prune_amount)
262
+ return model
263
+
264
+ def use_knowledge_distillation(model, teacher_model, temperature=2.0, alpha=0.5):
265
+ # Set the teacher model to evaluation mode
266
+ teacher_model.eval()
267
+
268
+ # Define the knowledge distillation loss function (Kullback-Leibler divergence)
269
+ criterion = torch.nn.KLDivLoss(reduction='batchmean')
270
+
271
+ def distillation_loss(student_logits, teacher_logits):
272
+ # Calculate the distillation loss between student and teacher logits
273
+ student_probs = F.log_softmax(student_logits / temperature, dim=-1)
274
+ teacher_probs = F.softmax(teacher_logits / temperature, dim=-1)
275
+ return criterion(student_probs, teacher_probs) * (temperature**2)
276
+
277
+ def train_step(inputs, labels):
278
+ # Define the training step for knowledge distillation
279
+ student_outputs = model(**inputs, labels=labels) # Get student outputs
280
+ student_logits = student_outputs.logits # Extract student logits
281
+ with torch.no_grad():
282
+ teacher_outputs = teacher_model(**inputs) # Get teacher outputs
283
+ teacher_logits = teacher_outputs.logits # Extract teacher logits
284
+ # Calculate the combined loss (student loss + distillation loss)
285
+ loss = alpha * student_outputs.loss + (1 - alpha) * distillation_loss(student_logits, teacher_logits)
286
+ return loss
287
+
288
+ return train_step
289
+
290
+ def use_weight_sharing(model):
291
+ # Share weights between the first and last layers of the transformer block
292
+ if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
293
+ model.transformer.h[-1].load_state_dict(model.transformer.h[0].state_dict())
294
+ return model
295
+
296
+ def use_low_rank_approximation(model, rank_factor=0.5):
297
+ # Apply low-rank approximation to linear layers using Singular Value Decomposition (SVD)
298
+ for module in model.modules():
299
+ if isinstance(module, torch.nn.Linear):
300
+ original_weight = module.weight.data
301
+ U, S, V = torch.linalg.svd(original_weight) # Perform SVD
302
+ rank = int(S.size(0) * rank_factor) # Calculate the reduced rank
303
+ # Reconstruct the weight matrix with the reduced rank
304
+ module.weight.data = U[:, :rank] @ torch.diag(S[:rank]) @ V[:rank, :]
305
+ return model
306
+
307
+ def use_hashing_trick(model, num_hashes=1024):
308
+ def hash_features(features):
309
+ # Convert features to bytes
310
+ features_bytes = features.cpu().numpy().tobytes()
311
+ # Calculate hash using SHA256
312
+ hash_object = hashlib.sha256(features_bytes)
313
+ hash_value = hash_object.hexdigest()
314
+ # Convert hash to integer and modulo by num_hashes
315
+ hashed_features = int(hash_value, 16) % num_hashes
316
+ return torch.tensor(hashed_features, device=features.device)
317
+
318
+ # Modify the model's forward pass to incorporate hashing
319
+ original_forward = model.forward
320
+
321
+ def forward(*args, **kwargs):
322
+ inputs = args[0] # Assuming the first argument is the input features
323
+ hashed_inputs = hash_features(inputs)
324
+ return original_forward(hashed_inputs, *args[1:], **kwargs)
325
+
326
+ model.forward = forward
327
  return model
328
 
329
+ def use_quantization_aware_training(model):
330
+ # Set the quantization configuration for QAT
331
+ model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
332
+ # Prepare the model for quantization-aware training
333
+ torch.quantization.prepare_qat(model, inplace=True)
334
+ # ... (Train the model using quantization-aware training)
335
+ # Convert the model to quantized form after training
336
+ torch.quantization.convert(model, inplace=True)
337
+ return model
338
+
339
+ def use_gradient_checkpointing(model):
340
+ # Enable gradient checkpointing for the model
341
+ def custom_forward(*inputs):
342
+ return checkpoint(model, *inputs)
343
+ model.forward = custom_forward
344
+ return model
345
+
346
+ def use_model_pruning(model, prune_amount=0.1):
347
+ # Apply pruning to the model
348
+ return prune_model(model, amount=prune_amount)
349
+
350
+ def use_distillation_then_pruning(model, teacher_model, prune_amount=0.1):
351
+ # Apply knowledge distillation followed by pruning
352
+ model = use_knowledge_distillation(model, teacher_model)
353
+ model = prune_model(model, amount=prune_amount)
354
+ return model
355
+
356
+ def use_channel_pruning(model, prune_amount=0.1):
357
+ # Apply channel pruning to convolutional layers in the model
358
+ for module in model.modules():
359
+ if isinstance(module, torch.nn.Conv2d):
360
+ # Apply L1 structured pruning to the convolutional layer's weight
361
+ prune.ln_structured(module, name="weight", amount=prune_amount, n=2, dim=0)
362
+ # Remove the pruned weights
363
+ prune.remove(module, 'weight')
364
+ return model
365
+
366
+ def use_sparse_tensors(model, sparsity_threshold=0.01):
367
+ # Convert dense tensors to sparse tensors based on a sparsity threshold
368
+ for name, param in model.named_parameters():
369
+ if param.dim() >= 2 and param.is_floating_point():
370
+ # Convert the parameter to a sparse tensor
371
+ sparse_param = param.to_sparse()
372
+ # Set values below the threshold to 0 in the sparse tensor
373
+ sparse_param._values()[sparse_param._values().abs() < sparsity_threshold] = 0
374
+ # Convert the sparse tensor back to a dense tensor
375
+ param.data = sparse_param.to_dense()
376
+ return model
377
+
378
+ def use_hardware_acceleration(model):
379
+ # Hardware acceleration is usually handled automatically by the deep learning framework
380
+ return model
381
+
382
+ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size,
383
+ oauth_token: gr.OAuthToken | None):
384
+ # Check if the user is logged in
385
  if oauth_token.token is None:
386
  raise ValueError("You must be logged in to use GGUF-my-repo")
387
+
388
+ # Extract the model name from the model ID
389
  model_name = model_id.split('/')[-1]
390
+ # Define the filename for the FP16 GGUF model
391
  fp16 = f"{model_name}.fp16.gguf"
392
 
393
  try:
394
+ # Initialize the Hugging Face API
395
  api = HfApi(token=oauth_token.token)
396
+
397
+ # Define the file patterns to download from the repository
398
  dl_pattern = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel", "*.md", "*.json", "*.model"]
399
  pattern = "*.safetensors" if any(file.path.endswith(".safetensors") for file in api.list_repo_tree(repo_id=model_id, recursive=True)) else "*.bin"
400
  dl_pattern += pattern
401
+
402
+ # Download the model files from the Hugging Face repository
403
  api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
404
+
405
+ # Define the command to convert the model to FP16 GGUF format
406
  conversion_script = "convert_hf_to_gguf.py"
407
  fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
408
+
409
+ # Execute the conversion command
410
  result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
411
+
412
+ # Check if the conversion was successful
413
  if result.returncode != 0:
414
  raise Exception(f"Error converting to fp16: {result.stderr}")
415
+
416
+ # Load the model
417
+ config = AutoConfig.from_pretrained(model_name)
418
+ model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=torch.float16)
419
+
420
+ # Apply model optimization techniques
421
+ model = optimize_model_resources(model)
422
+ model = apply_quantization(model, use_int8_inference=True)
423
+ model = reduce_layers(model, reduction_factor=0.5)
424
+ model = use_smaller_embeddings(model, reduction_factor=0.75)
425
+ model = use_fp16_embeddings(model)
426
+ model = quantize_embeddings(model)
427
+ model = use_bnb_f16(model)
428
+ model = use_group_quantization(model)
429
+ model = apply_layer_norm_trick(model)
430
+ model = use_selective_quantization(model)
431
+ model = use_mixed_precision(model)
432
+ model = use_pruning_after_training(model, prune_amount=0.1)
433
+ teacher_model = deepcopy(model) # Create a copy for knowledge distillation
434
+ model = use_knowledge_distillation(model, teacher_model)
435
+ model = use_weight_sharing(model)
436
+ model = use_low_rank_approximation(model, rank_factor=0.5)
437
+ model = use_quantization_aware_training(model)
438
+ model = use_gradient_checkpointing(model)
439
+ model = use_channel_pruning(model, prune_amount=0.1)
440
+ model = use_sparse_tensors(model, sparsity_threshold=0.01)
441
+ model = use_hashing_trick(model, num_hashes=1024)
442
+
443
+ # Save the optimized model
444
+ model.save_pretrained(model_name)
445
+
446
+ # Define the path to the importance matrix file
447
  imatrix_path = "llama.cpp/imatrix.dat"
448
+
449
+ # Generate the importance matrix if the use_imatrix flag is set
450
  if use_imatrix:
451
  if train_data_file:
452
  train_data_path = train_data_file.name
453
  else:
454
  train_data_path = "groups_merged.txt"
455
+ # Check if the training data file exists
456
  if not os.path.isfile(train_data_path):
457
  raise Exception(f"Training data file not found: {train_data_path}")
458
+ # Generate the importance matrix
459
  generate_importance_matrix(fp16, train_data_path)
460
+
461
+ # Get the username of the logged-in user
462
  username = whoami(oauth_token.token)["name"]
463
+
464
+ # Define the filename for the quantized GGUF model
465
  quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
466
  quantized_gguf_path = quantized_gguf_name
467
+
468
+ # Construct the command to quantize the model using llama.cpp
469
  if use_imatrix:
470
  quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
471
  else:
472
  quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
473
+
474
+ # Execute the quantization command
475
  result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
476
+
477
+ # Check if the quantization was successful
478
  if result.returncode != 0:
479
  raise Exception(f"Error quantizing: {result.stderr}")
480
+
481
+ # Verify the processed model
482
+ try:
483
+ # Run the llama.cpp binary with the quantized model and a test prompt
484
+ subprocess.run(["llama.cpp/llama", "-m", quantized_gguf_path, "-p", "Test prompt"], check=True)
485
+ except Exception as e:
486
+ raise Exception(f"Model verification failed: {e}")
487
+
488
+ # Create a new Hugging Face repository for the quantized model
489
  new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
490
  new_repo_id = new_repo_url.repo_id
491
+
492
+ # Load the model card from the original model
493
  try:
494
  card = ModelCard.load(model_id, token=oauth_token.token)
495
  except:
496
+ # Create an empty model card if loading fails
497
  card = ModelCard("")
498
+
499
+ # Add tags to the model card
500
  if card.data.tags is None:
501
  card.data.tags = []
502
  card.data.tags.append("llama-cpp")
503
  card.data.tags.append("gguf-my-repo")
504
+
505
+ # Set the base model in the model card
506
  card.data.base_model = model_id
507
+
508
+ # Set the model card text
509
  card.text = dedent(
510
  f"""
511
  # {new_repo_id}
 
550
  ```
551
  """
552
  )
553
+ # Save the model card to a file
554
  card.save(f"README.md")
555
 
556
+ # Upload the quantized model to the Hugging Face repository
557
  if split_model:
558
  split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
559
  else:
 
562
  except Exception as e:
563
  raise Exception(f"Error uploading quantized model: {e}")
564
 
565
+ # Upload the importance matrix file if it exists
566
  if os.path.isfile(imatrix_path):
567
  try:
568
  api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=new_repo_id)
569
  except Exception as e:
570
  raise Exception(f"Error uploading imatrix.dat: {e}")
571
 
572
+ # Upload the model card file
573
  api.upload_file(path_or_fileobj=f"README.md", path_in_repo=f"README.md", repo_id=new_repo_id)
574
+
575
+ # Return a message with a link to the new repository
576
  return (f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', "llama.png")
577
  except Exception as e:
578
+ # Return an error message if an exception occurs
579
  return (f"Error: {e}", "error.png")
580
  finally:
581
+ # Remove the downloaded model directory
582
  shutil.rmtree(model_name, ignore_errors=True)
583
 
584
+ # Define the CSS styles for the Gradio interface
585
  css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;}"""
586
+
587
+ # Create the Gradio interface
588
  with gr.Blocks(css=css) as demo:
589
+ # Display a message indicating that the user must be logged in
590
  gr.Markdown("You must be logged in to use GGUF-my-repo.")
591
+ # Add a login button
592
  gr.LoginButton(min_width=250)
593
+ # Add a search bar for Hugging Face model IDs
594
  model_id = HuggingfaceHubSearch(label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model")
595
+
596
+ # Quantization Options
597
+ # Dropdown menu for selecting the quantization method
598
+ q_method = gr.Dropdown(["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
599
+ label="Quantization Method", info="GGML quantization type", value="Q2_K", filterable=False, visible=True)
600
+ # Dropdown menu for selecting the imatrix quantization method
601
+ imatrix_q_method = gr.Dropdown(["IQ1", "IQ1_S", "IQ1_XXS", "IQ2_S", "IQ2_XXS", "IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
602
+ label="Imatrix Quantization Method", info="GGML imatrix quants type", value="IQ4_NL", filterable=False, visible=False)
603
+ # Checkbox for enabling imatrix quantization
604
  use_imatrix = gr.Checkbox(value=False, label="Use Imatrix Quantization", info="Use importance matrix for quantization.")
605
+ # File upload component for the training data file
606
  train_data_file = gr.File(label="Training Data File", file_types=["txt"], visible=False)
607
+
608
+ # Repo Options
609
+ # Checkbox for creating a private repository
610
+ private_repo = gr.Checkbox(value=False, label="Private Repo", info="Create a private repo under your username.")
611
+ # Checkbox for splitting the model into shards
612
  split_model = gr.Checkbox(value=False, label="Split Model", info="Shard the model using gguf-split.")
613
+ # Number input for the maximum number of tensors per shard
614
  split_max_tensors = gr.Number(value=256, label="Max Tensors per File", info="Maximum number of tensors per file when splitting model.", visible=False)
615
+ # Textbox for the maximum file size of each shard
616
  split_max_size = gr.Textbox(label="Max File Size", info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.", visible=False)
617
 
618
+ # Dynamically show/hide options based on selections
619
+ # Show/hide the quantization method dropdown based on the use_imatrix checkbox
620
  use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=not use_imatrix), inputs=use_imatrix, outputs=q_method)
621
+ # Show/hide the imatrix quantization method dropdown based on the use_imatrix checkbox
622
  use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=imatrix_q_method)
623
+ # Show/hide the training data file upload component based on the use_imatrix checkbox
624
  use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=train_data_file)
625
+ # Show/hide the maximum tensors per file number input based on the split_model checkbox
626
  split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_tensors)
627
+ # Show/hide the maximum file size textbox based on the split_model checkbox
628
  split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_size)
629
 
630
+ # Define the Gradio interface
631
  iface = gr.Interface(
632
+ fn=process_model, # The function to call when the interface is submitted
633
  inputs=[
634
+ model_id, # The Hugging Face model ID
635
+ q_method, # The quantization method
636
+ use_imatrix, # Whether to use imatrix quantization
637
+ imatrix_q_method, # The imatrix quantization method
638
+ private_repo, # Whether to create a private repository
639
+ train_data_file, # The training data file
640
+ split_model, # Whether to split the model into shards
641
+ split_max_tensors, # The maximum number of tensors per shard
642
+ split_max_size # The maximum file size of each shard
643
  ],
644
  outputs=[
645
+ gr.Markdown(label="output"), # A Markdown component to display the output message
646
+ gr.Image(show_label=False), # An image component to display the output image
647
  ],
648
+ title="Create your own GGUF Quants, blazingly fast ⚡!", # The title of the interface
649
+ description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.", # The description of the interface
650
+ api_name=False # Whether to expose the interface as an API
651
  )
652
 
653
+ # Define a function to restart the Gradio space
654
  def restart_space():
655
+ # Restart the space using the Hugging Face API
656
  HfApi().restart_space(repo_id="Ffftdtd5dtft/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
657
 
658
+ # Create a background scheduler
659
  scheduler = BackgroundScheduler()
660
+ # Add a job to restart the space every 6 hours (21600 seconds)
661
  scheduler.add_job(restart_space, "interval", seconds=21600)
662
+ # Start the scheduler
663
  scheduler.start()
664
 
665
+ # Launch the Gradio interface with queuing and debugging enabled
666
  demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)