Spaces:
Runtime error
Runtime error
Ffftdtd5dtft
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,43 +5,70 @@ import signal
|
|
5 |
import time
|
6 |
import torch
|
7 |
from torch.nn.utils import prune
|
8 |
-
from transformers import GPT2LMHeadModel, AutoTokenizer, AutoModelForCausalLM, DistilBertModel
|
9 |
from huggingface_hub import create_repo, HfApi, snapshot_download, whoami, ModelCard
|
10 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
11 |
from apscheduler.schedulers.background import BackgroundScheduler
|
12 |
from textwrap import dedent
|
13 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
16 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
17 |
|
18 |
def generate_importance_matrix(model_path, train_data_path):
|
19 |
-
|
20 |
os.chdir("llama.cpp")
|
|
|
|
|
21 |
if not os.path.isfile(f"../{model_path}"):
|
22 |
raise Exception(f"Model file not found: {model_path}")
|
|
|
|
|
|
|
|
|
|
|
23 |
process = subprocess.Popen(imatrix_command, shell=True)
|
24 |
try:
|
25 |
-
process.wait(timeout=
|
26 |
except subprocess.TimeoutExpired:
|
|
|
27 |
process.send_signal(signal.SIGINT)
|
28 |
try:
|
29 |
-
process.wait(timeout=
|
30 |
except subprocess.TimeoutExpired:
|
|
|
31 |
process.kill()
|
|
|
|
|
32 |
os.chdir("..")
|
33 |
|
34 |
def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256, split_max_size=None):
|
|
|
35 |
if oauth_token.token is None:
|
36 |
raise ValueError("You have to be logged in.")
|
|
|
|
|
37 |
split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
|
38 |
if split_max_size:
|
39 |
split_cmd += f" --split-max-size {split_max_size}"
|
40 |
split_cmd += f" {model_path} {model_path.split('.')[0]}"
|
|
|
|
|
41 |
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
|
|
|
|
|
42 |
if result.returncode != 0:
|
43 |
raise Exception(f"Error splitting the model: {result.stderr}")
|
|
|
|
|
44 |
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
|
|
|
|
|
45 |
if sharded_model_files:
|
46 |
api = HfApi(token=oauth_token.token)
|
47 |
for file in sharded_model_files:
|
@@ -54,113 +81,431 @@ def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256,
|
|
54 |
raise Exception("No sharded files found.")
|
55 |
|
56 |
def prune_model(model, amount=0.5):
|
|
|
57 |
for name, module in model.named_modules():
|
58 |
if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)):
|
|
|
59 |
prune.l1_unstructured(module, name='weight', amount=amount)
|
|
|
60 |
prune.remove(module, 'weight')
|
61 |
return model
|
62 |
|
63 |
def quantize_to_q1_with_min(tensor, min_value=-1):
|
|
|
64 |
tensor = torch.sign(tensor)
|
65 |
tensor[tensor < min_value] = min_value
|
66 |
return tensor
|
67 |
|
68 |
def quantize_model_to_q1_with_min(model, min_value=-1):
|
|
|
69 |
for name, param in model.named_parameters():
|
70 |
if param.dtype in [torch.float32, torch.float16]:
|
71 |
with torch.no_grad():
|
72 |
param.copy_(quantize_to_q1_with_min(param.data, min_value))
|
73 |
|
74 |
def disable_unnecessary_components(model):
|
|
|
75 |
for name, module in model.named_modules():
|
76 |
if isinstance(module, torch.nn.Dropout):
|
|
|
77 |
module.p = 0.0
|
78 |
elif isinstance(module, torch.nn.BatchNorm1d):
|
|
|
79 |
module.eval()
|
80 |
|
81 |
def ultra_max_compress(model):
|
82 |
-
|
83 |
-
|
84 |
-
|
|
|
|
|
85 |
with torch.no_grad():
|
86 |
for name, param in model.named_parameters():
|
87 |
if param.requires_grad:
|
88 |
param.requires_grad = False
|
89 |
-
param.data = torch.nn.functional.hardtanh(param.data, min_val=-1.0, max_val=1.0)
|
90 |
-
param.data = param.data.half()
|
|
|
91 |
try:
|
|
|
92 |
model = torch.jit.script(model)
|
93 |
except Exception:
|
94 |
pass
|
95 |
-
|
96 |
-
model.
|
|
|
|
|
|
|
97 |
for buffer_name, buffer in model.named_buffers():
|
98 |
if buffer.numel() == 0:
|
99 |
model._buffers.pop(buffer_name)
|
|
|
100 |
return model
|
101 |
|
102 |
def optimize_model_resources(model):
|
|
|
103 |
torch.set_grad_enabled(False)
|
|
|
|
|
104 |
model.eval()
|
|
|
|
|
105 |
for name, param in model.named_parameters():
|
106 |
param.requires_grad = False
|
107 |
if param.dtype == torch.float32:
|
108 |
param.data = param.data.half()
|
|
|
|
|
109 |
if hasattr(model, 'config'):
|
110 |
if hasattr(model.config, 'max_position_embeddings'):
|
|
|
111 |
model.config.max_position_embeddings = min(model.config.max_position_embeddings, 512)
|
112 |
if hasattr(model.config, 'hidden_size'):
|
|
|
113 |
model.config.hidden_size = min(model.config.hidden_size, 768)
|
|
|
|
|
114 |
model = torch.jit.optimize_for_inference(model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
return model
|
116 |
|
117 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
118 |
if oauth_token.token is None:
|
119 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
|
|
|
|
120 |
model_name = model_id.split('/')[-1]
|
|
|
121 |
fp16 = f"{model_name}.fp16.gguf"
|
122 |
|
123 |
try:
|
|
|
124 |
api = HfApi(token=oauth_token.token)
|
|
|
|
|
125 |
dl_pattern = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel", "*.md", "*.json", "*.model"]
|
126 |
pattern = "*.safetensors" if any(file.path.endswith(".safetensors") for file in api.list_repo_tree(repo_id=model_id, recursive=True)) else "*.bin"
|
127 |
dl_pattern += pattern
|
|
|
|
|
128 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
|
|
|
|
129 |
conversion_script = "convert_hf_to_gguf.py"
|
130 |
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
|
|
|
|
|
131 |
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
|
|
|
|
|
132 |
if result.returncode != 0:
|
133 |
raise Exception(f"Error converting to fp16: {result.stderr}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
imatrix_path = "llama.cpp/imatrix.dat"
|
|
|
|
|
135 |
if use_imatrix:
|
136 |
if train_data_file:
|
137 |
train_data_path = train_data_file.name
|
138 |
else:
|
139 |
train_data_path = "groups_merged.txt"
|
|
|
140 |
if not os.path.isfile(train_data_path):
|
141 |
raise Exception(f"Training data file not found: {train_data_path}")
|
|
|
142 |
generate_importance_matrix(fp16, train_data_path)
|
|
|
|
|
143 |
username = whoami(oauth_token.token)["name"]
|
|
|
|
|
144 |
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
145 |
quantized_gguf_path = quantized_gguf_name
|
|
|
|
|
146 |
if use_imatrix:
|
147 |
quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
|
148 |
else:
|
149 |
quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
|
|
|
|
|
150 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
|
|
|
|
151 |
if result.returncode != 0:
|
152 |
raise Exception(f"Error quantizing: {result.stderr}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
154 |
new_repo_id = new_repo_url.repo_id
|
|
|
|
|
155 |
try:
|
156 |
card = ModelCard.load(model_id, token=oauth_token.token)
|
157 |
except:
|
|
|
158 |
card = ModelCard("")
|
|
|
|
|
159 |
if card.data.tags is None:
|
160 |
card.data.tags = []
|
161 |
card.data.tags.append("llama-cpp")
|
162 |
card.data.tags.append("gguf-my-repo")
|
|
|
|
|
163 |
card.data.base_model = model_id
|
|
|
|
|
164 |
card.text = dedent(
|
165 |
f"""
|
166 |
# {new_repo_id}
|
@@ -205,8 +550,10 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
205 |
```
|
206 |
"""
|
207 |
)
|
|
|
208 |
card.save(f"README.md")
|
209 |
|
|
|
210 |
if split_model:
|
211 |
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
212 |
else:
|
@@ -215,66 +562,105 @@ def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_rep
|
|
215 |
except Exception as e:
|
216 |
raise Exception(f"Error uploading quantized model: {e}")
|
217 |
|
|
|
218 |
if os.path.isfile(imatrix_path):
|
219 |
try:
|
220 |
api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=new_repo_id)
|
221 |
except Exception as e:
|
222 |
raise Exception(f"Error uploading imatrix.dat: {e}")
|
223 |
|
|
|
224 |
api.upload_file(path_or_fileobj=f"README.md", path_in_repo=f"README.md", repo_id=new_repo_id)
|
|
|
|
|
225 |
return (f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', "llama.png")
|
226 |
except Exception as e:
|
|
|
227 |
return (f"Error: {e}", "error.png")
|
228 |
finally:
|
|
|
229 |
shutil.rmtree(model_name, ignore_errors=True)
|
230 |
|
|
|
231 |
css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;}"""
|
|
|
|
|
232 |
with gr.Blocks(css=css) as demo:
|
|
|
233 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
|
|
234 |
gr.LoginButton(min_width=250)
|
|
|
235 |
model_id = HuggingfaceHubSearch(label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model")
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
use_imatrix = gr.Checkbox(value=False, label="Use Imatrix Quantization", info="Use importance matrix for quantization.")
|
239 |
-
|
240 |
train_data_file = gr.File(label="Training Data File", file_types=["txt"], visible=False)
|
|
|
|
|
|
|
|
|
|
|
241 |
split_model = gr.Checkbox(value=False, label="Split Model", info="Shard the model using gguf-split.")
|
|
|
242 |
split_max_tensors = gr.Number(value=256, label="Max Tensors per File", info="Maximum number of tensors per file when splitting model.", visible=False)
|
|
|
243 |
split_max_size = gr.Textbox(label="Max File Size", info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.", visible=False)
|
244 |
|
|
|
|
|
245 |
use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=not use_imatrix), inputs=use_imatrix, outputs=q_method)
|
|
|
246 |
use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=imatrix_q_method)
|
|
|
247 |
use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=train_data_file)
|
|
|
248 |
split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_tensors)
|
|
|
249 |
split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_size)
|
250 |
|
|
|
251 |
iface = gr.Interface(
|
252 |
-
fn=process_model,
|
253 |
inputs=[
|
254 |
-
model_id,
|
255 |
-
q_method,
|
256 |
-
use_imatrix,
|
257 |
-
imatrix_q_method,
|
258 |
-
private_repo,
|
259 |
-
train_data_file,
|
260 |
-
split_model,
|
261 |
-
split_max_tensors,
|
262 |
-
split_max_size
|
263 |
],
|
264 |
outputs=[
|
265 |
-
gr.Markdown(label="output"),
|
266 |
-
gr.Image(show_label=False),
|
267 |
],
|
268 |
-
title="Create your own GGUF Quants, blazingly fast ⚡!",
|
269 |
-
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.",
|
270 |
-
api_name=False
|
271 |
)
|
272 |
|
|
|
273 |
def restart_space():
|
|
|
274 |
HfApi().restart_space(repo_id="Ffftdtd5dtft/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|
275 |
|
|
|
276 |
scheduler = BackgroundScheduler()
|
|
|
277 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
|
|
278 |
scheduler.start()
|
279 |
|
|
|
280 |
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|
|
|
5 |
import time
|
6 |
import torch
|
7 |
from torch.nn.utils import prune
|
8 |
+
from transformers import GPT2LMHeadModel, AutoTokenizer, AutoModelForCausalLM, DistilBertModel, AutoConfig
|
9 |
from huggingface_hub import create_repo, HfApi, snapshot_download, whoami, ModelCard
|
10 |
from gradio_huggingfacehub_search import HuggingfaceHubSearch
|
11 |
from apscheduler.schedulers.background import BackgroundScheduler
|
12 |
from textwrap import dedent
|
13 |
import gradio as gr
|
14 |
+
import torch.quantization
|
15 |
+
from torch.nn import functional as F
|
16 |
+
from copy import deepcopy
|
17 |
+
from torch.utils.checkpoint import checkpoint
|
18 |
+
import hashlib
|
19 |
|
20 |
os.environ["GRADIO_ANALYTICS_ENABLED"] = "False"
|
21 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
22 |
|
23 |
def generate_importance_matrix(model_path, train_data_path):
|
24 |
+
# Change the working directory to the llama.cpp directory
|
25 |
os.chdir("llama.cpp")
|
26 |
+
|
27 |
+
# Check if the model file exists
|
28 |
if not os.path.isfile(f"../{model_path}"):
|
29 |
raise Exception(f"Model file not found: {model_path}")
|
30 |
+
|
31 |
+
# Construct the command to generate the importance matrix
|
32 |
+
imatrix_command = f"./llama-imatrix -m ../{model_path} -f {train_data_path} -ngl 99 --output-frequency 10"
|
33 |
+
|
34 |
+
# Execute the command and wait for it to finish
|
35 |
process = subprocess.Popen(imatrix_command, shell=True)
|
36 |
try:
|
37 |
+
process.wait(timeout=0)
|
38 |
except subprocess.TimeoutExpired:
|
39 |
+
# If the process takes too long, send a SIGINT signal (interrupt)
|
40 |
process.send_signal(signal.SIGINT)
|
41 |
try:
|
42 |
+
process.wait(timeout=0)
|
43 |
except subprocess.TimeoutExpired:
|
44 |
+
# If it still doesn't finish, kill the process
|
45 |
process.kill()
|
46 |
+
|
47 |
+
# Change the working directory back to the parent directory
|
48 |
os.chdir("..")
|
49 |
|
50 |
def split_upload_model(model_path, repo_id, oauth_token, split_max_tensors=256, split_max_size=None):
|
51 |
+
# Check if the user is logged in
|
52 |
if oauth_token.token is None:
|
53 |
raise ValueError("You have to be logged in.")
|
54 |
+
|
55 |
+
# Construct the command to split the model
|
56 |
split_cmd = f"llama.cpp/llama-gguf-split --split --split-max-tensors {split_max_tensors}"
|
57 |
if split_max_size:
|
58 |
split_cmd += f" --split-max-size {split_max_size}"
|
59 |
split_cmd += f" {model_path} {model_path.split('.')[0]}"
|
60 |
+
|
61 |
+
# Execute the command and capture the output
|
62 |
result = subprocess.run(split_cmd, shell=True, capture_output=True, text=True)
|
63 |
+
|
64 |
+
# Check if the command was successful
|
65 |
if result.returncode != 0:
|
66 |
raise Exception(f"Error splitting the model: {result.stderr}")
|
67 |
+
|
68 |
+
# Get a list of sharded model files
|
69 |
sharded_model_files = [f for f in os.listdir('.') if f.startswith(model_path.split('.')[0])]
|
70 |
+
|
71 |
+
# If sharded files were found, upload them to the Hugging Face repository
|
72 |
if sharded_model_files:
|
73 |
api = HfApi(token=oauth_token.token)
|
74 |
for file in sharded_model_files:
|
|
|
81 |
raise Exception("No sharded files found.")
|
82 |
|
83 |
def prune_model(model, amount=0.5):
|
84 |
+
# Iterate over the model's modules and apply pruning to linear and convolutional layers
|
85 |
for name, module in model.named_modules():
|
86 |
if isinstance(module, (torch.nn.Linear, torch.nn.Conv2d)):
|
87 |
+
# Apply L1 unstructured pruning
|
88 |
prune.l1_unstructured(module, name='weight', amount=amount)
|
89 |
+
# Remove the pruned weights
|
90 |
prune.remove(module, 'weight')
|
91 |
return model
|
92 |
|
93 |
def quantize_to_q1_with_min(tensor, min_value=-1):
|
94 |
+
# Quantize the tensor to -1, 0, or 1 based on the sign and minimum value
|
95 |
tensor = torch.sign(tensor)
|
96 |
tensor[tensor < min_value] = min_value
|
97 |
return tensor
|
98 |
|
99 |
def quantize_model_to_q1_with_min(model, min_value=-1):
|
100 |
+
# Iterate over the model's parameters and apply quantization
|
101 |
for name, param in model.named_parameters():
|
102 |
if param.dtype in [torch.float32, torch.float16]:
|
103 |
with torch.no_grad():
|
104 |
param.copy_(quantize_to_q1_with_min(param.data, min_value))
|
105 |
|
106 |
def disable_unnecessary_components(model):
|
107 |
+
# Iterate over the model's modules and disable dropout and batch normalization
|
108 |
for name, module in model.named_modules():
|
109 |
if isinstance(module, torch.nn.Dropout):
|
110 |
+
# Set dropout probability to 0
|
111 |
module.p = 0.0
|
112 |
elif isinstance(module, torch.nn.BatchNorm1d):
|
113 |
+
# Set batch normalization to evaluation mode
|
114 |
module.eval()
|
115 |
|
116 |
def ultra_max_compress(model):
|
117 |
+
# Apply a series of aggressive optimization techniques to the model
|
118 |
+
model = prune_model(model, amount=0.8) # Prune 80% of the weights
|
119 |
+
quantize_model_to_q1_with_min(model, min_value=-0.05) # Quantize weights to -1, 0, or 1
|
120 |
+
disable_unnecessary_components(model) # Disable dropout and batch normalization
|
121 |
+
|
122 |
with torch.no_grad():
|
123 |
for name, param in model.named_parameters():
|
124 |
if param.requires_grad:
|
125 |
param.requires_grad = False
|
126 |
+
param.data = torch.nn.functional.hardtanh(param.data, min_val=-1.0, max_val=1.0) # Apply hardtanh activation
|
127 |
+
param.data = param.data.half() # Convert weights to half precision
|
128 |
+
|
129 |
try:
|
130 |
+
# Attempt to convert the model to a TorchScript module
|
131 |
model = torch.jit.script(model)
|
132 |
except Exception:
|
133 |
pass
|
134 |
+
|
135 |
+
model = prune_model(model, amount=0.9) # Prune another 90% of the weights
|
136 |
+
model.eval() # Set the model to evaluation mode
|
137 |
+
|
138 |
+
# Remove empty buffers from the model
|
139 |
for buffer_name, buffer in model.named_buffers():
|
140 |
if buffer.numel() == 0:
|
141 |
model._buffers.pop(buffer_name)
|
142 |
+
|
143 |
return model
|
144 |
|
145 |
def optimize_model_resources(model):
|
146 |
+
# Disable gradient calculations
|
147 |
torch.set_grad_enabled(False)
|
148 |
+
|
149 |
+
# Set the model to evaluation mode
|
150 |
model.eval()
|
151 |
+
|
152 |
+
# Iterate over the model's parameters and convert float32 weights to half precision
|
153 |
for name, param in model.named_parameters():
|
154 |
param.requires_grad = False
|
155 |
if param.dtype == torch.float32:
|
156 |
param.data = param.data.half()
|
157 |
+
|
158 |
+
# Adjust model configuration for resource optimization
|
159 |
if hasattr(model, 'config'):
|
160 |
if hasattr(model.config, 'max_position_embeddings'):
|
161 |
+
# Limit the maximum position embeddings to 512
|
162 |
model.config.max_position_embeddings = min(model.config.max_position_embeddings, 512)
|
163 |
if hasattr(model.config, 'hidden_size'):
|
164 |
+
# Limit the hidden size to 768
|
165 |
model.config.hidden_size = min(model.config.hidden_size, 768)
|
166 |
+
|
167 |
+
# Optimize the model for inference using TorchScript
|
168 |
model = torch.jit.optimize_for_inference(model)
|
169 |
+
|
170 |
+
return model
|
171 |
+
|
172 |
+
def aggressive_optimize(model, reduce_layers_factor=0.5):
|
173 |
+
# Reduce the number of attention heads and hidden size based on the reduction factor
|
174 |
+
if hasattr(model.config, 'num_attention_heads'):
|
175 |
+
model.config.num_attention_heads = int(model.config.num_attention_heads * reduce_layers_factor)
|
176 |
+
if hasattr(model.config, 'hidden_size'):
|
177 |
+
model.config.hidden_size = int(model.config.hidden_size * reduce_layers_factor)
|
178 |
+
return model
|
179 |
+
|
180 |
+
def apply_quantization(model, use_int8_inference):
|
181 |
+
# Apply dynamic quantization to linear layers if INT8 inference is enabled
|
182 |
+
if use_int8_inference:
|
183 |
+
quantized_model = torch.quantization.quantize_dynamic(
|
184 |
+
model, {torch.nn.Linear}, dtype=torch.qint8
|
185 |
+
)
|
186 |
+
return quantized_model
|
187 |
+
else:
|
188 |
+
return model
|
189 |
+
|
190 |
+
def reduce_layers(model, reduction_factor=0.5):
|
191 |
+
# Reduce the number of layers in the transformer block
|
192 |
+
if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
|
193 |
+
original_num_layers = len(model.transformer.h)
|
194 |
+
new_num_layers = int(original_num_layers * reduction_factor)
|
195 |
+
model.transformer.h = torch.nn.ModuleList(model.transformer.h[:new_num_layers])
|
196 |
+
return model
|
197 |
+
|
198 |
+
def use_smaller_embeddings(model, reduction_factor=0.75):
|
199 |
+
# Reduce the size of the embedding layer
|
200 |
+
original_embedding_dim = model.config.hidden_size
|
201 |
+
new_embedding_dim = int(original_embedding_dim * reduction_factor)
|
202 |
+
model.config.hidden_size = new_embedding_dim
|
203 |
+
model.resize_token_embeddings(int(model.config.vocab_size * reduction_factor))
|
204 |
+
return model
|
205 |
+
|
206 |
+
def use_fp16_embeddings(model):
|
207 |
+
# Convert the embedding weights to half precision (float16)
|
208 |
+
model.transformer.wte = model.transformer.wte.half()
|
209 |
+
return model
|
210 |
+
|
211 |
+
def quantize_embeddings(model):
|
212 |
+
# Quantize the embedding layer using dynamic quantization
|
213 |
+
model.transformer.wte = torch.quantization.quantize_dynamic(
|
214 |
+
model.transformer.wte, {torch.nn.Embedding}, dtype=torch.qint8
|
215 |
+
)
|
216 |
+
return model
|
217 |
+
|
218 |
+
def use_bnb_f16(model):
|
219 |
+
# Convert the model to BFLOAT16 (BF16) data type if supported by the hardware
|
220 |
+
if torch.cuda.is_available() and torch.cuda.is_bf16_supported():
|
221 |
+
model = model.to(dtype=torch.bfloat16)
|
222 |
+
return model
|
223 |
+
|
224 |
+
def use_group_quantization(model):
|
225 |
+
# Apply group quantization to linear layers in the model
|
226 |
+
for module in model.modules():
|
227 |
+
if isinstance(module, torch.nn.Linear):
|
228 |
+
# Fuse the linear layer's weight
|
229 |
+
torch.quantization.fuse_modules(module, ['weight'], inplace=True)
|
230 |
+
# Quantize the fused linear layer using dynamic quantization
|
231 |
+
torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
|
232 |
+
return model
|
233 |
+
|
234 |
+
def apply_layer_norm_trick(model):
|
235 |
+
# Disable learnable parameters (elementwise_affine) in LayerNorm layers
|
236 |
+
for name, module in model.named_modules():
|
237 |
+
if isinstance(module, torch.nn.LayerNorm):
|
238 |
+
module.elementwise_affine = False
|
239 |
+
return model
|
240 |
+
|
241 |
+
def remove_padding(inputs, attention_mask):
|
242 |
+
# Remove padding from input sequences based on the attention mask
|
243 |
+
last_non_padded = attention_mask.sum(dim=1) - 1 # Find the last non-padded token in each sequence
|
244 |
+
gathered_inputs = torch.gather(inputs, dim=1, index=last_non_padded.unsqueeze(1).unsqueeze(2).expand(-1, -1, inputs.size(2))) # Gather the non-padded tokens
|
245 |
+
return gathered_inputs
|
246 |
+
|
247 |
+
def use_selective_quantization(model):
|
248 |
+
# Apply dynamic quantization to multi-head attention layers
|
249 |
+
for module in model.modules():
|
250 |
+
if isinstance(module, torch.nn.MultiheadAttention):
|
251 |
+
torch.quantization.quantize_dynamic(module, {torch.nn.Linear}, dtype=torch.qint8, inplace=True)
|
252 |
+
return model
|
253 |
+
|
254 |
+
def use_mixed_precision(model):
|
255 |
+
# Convert the embedding weights to half precision (float16)
|
256 |
+
model.transformer.wte = model.transformer.wte.half()
|
257 |
+
return model
|
258 |
+
|
259 |
+
def use_pruning_after_training(model, prune_amount=0.1):
|
260 |
+
# Apply pruning to the model after training
|
261 |
+
model = prune_model(model, amount=prune_amount)
|
262 |
+
return model
|
263 |
+
|
264 |
+
def use_knowledge_distillation(model, teacher_model, temperature=2.0, alpha=0.5):
|
265 |
+
# Set the teacher model to evaluation mode
|
266 |
+
teacher_model.eval()
|
267 |
+
|
268 |
+
# Define the knowledge distillation loss function (Kullback-Leibler divergence)
|
269 |
+
criterion = torch.nn.KLDivLoss(reduction='batchmean')
|
270 |
+
|
271 |
+
def distillation_loss(student_logits, teacher_logits):
|
272 |
+
# Calculate the distillation loss between student and teacher logits
|
273 |
+
student_probs = F.log_softmax(student_logits / temperature, dim=-1)
|
274 |
+
teacher_probs = F.softmax(teacher_logits / temperature, dim=-1)
|
275 |
+
return criterion(student_probs, teacher_probs) * (temperature**2)
|
276 |
+
|
277 |
+
def train_step(inputs, labels):
|
278 |
+
# Define the training step for knowledge distillation
|
279 |
+
student_outputs = model(**inputs, labels=labels) # Get student outputs
|
280 |
+
student_logits = student_outputs.logits # Extract student logits
|
281 |
+
with torch.no_grad():
|
282 |
+
teacher_outputs = teacher_model(**inputs) # Get teacher outputs
|
283 |
+
teacher_logits = teacher_outputs.logits # Extract teacher logits
|
284 |
+
# Calculate the combined loss (student loss + distillation loss)
|
285 |
+
loss = alpha * student_outputs.loss + (1 - alpha) * distillation_loss(student_logits, teacher_logits)
|
286 |
+
return loss
|
287 |
+
|
288 |
+
return train_step
|
289 |
+
|
290 |
+
def use_weight_sharing(model):
|
291 |
+
# Share weights between the first and last layers of the transformer block
|
292 |
+
if hasattr(model, 'transformer') and hasattr(model.transformer, 'h'):
|
293 |
+
model.transformer.h[-1].load_state_dict(model.transformer.h[0].state_dict())
|
294 |
+
return model
|
295 |
+
|
296 |
+
def use_low_rank_approximation(model, rank_factor=0.5):
|
297 |
+
# Apply low-rank approximation to linear layers using Singular Value Decomposition (SVD)
|
298 |
+
for module in model.modules():
|
299 |
+
if isinstance(module, torch.nn.Linear):
|
300 |
+
original_weight = module.weight.data
|
301 |
+
U, S, V = torch.linalg.svd(original_weight) # Perform SVD
|
302 |
+
rank = int(S.size(0) * rank_factor) # Calculate the reduced rank
|
303 |
+
# Reconstruct the weight matrix with the reduced rank
|
304 |
+
module.weight.data = U[:, :rank] @ torch.diag(S[:rank]) @ V[:rank, :]
|
305 |
+
return model
|
306 |
+
|
307 |
+
def use_hashing_trick(model, num_hashes=1024):
|
308 |
+
def hash_features(features):
|
309 |
+
# Convert features to bytes
|
310 |
+
features_bytes = features.cpu().numpy().tobytes()
|
311 |
+
# Calculate hash using SHA256
|
312 |
+
hash_object = hashlib.sha256(features_bytes)
|
313 |
+
hash_value = hash_object.hexdigest()
|
314 |
+
# Convert hash to integer and modulo by num_hashes
|
315 |
+
hashed_features = int(hash_value, 16) % num_hashes
|
316 |
+
return torch.tensor(hashed_features, device=features.device)
|
317 |
+
|
318 |
+
# Modify the model's forward pass to incorporate hashing
|
319 |
+
original_forward = model.forward
|
320 |
+
|
321 |
+
def forward(*args, **kwargs):
|
322 |
+
inputs = args[0] # Assuming the first argument is the input features
|
323 |
+
hashed_inputs = hash_features(inputs)
|
324 |
+
return original_forward(hashed_inputs, *args[1:], **kwargs)
|
325 |
+
|
326 |
+
model.forward = forward
|
327 |
return model
|
328 |
|
329 |
+
def use_quantization_aware_training(model):
|
330 |
+
# Set the quantization configuration for QAT
|
331 |
+
model.qconfig = torch.quantization.get_default_qat_qconfig('fbgemm')
|
332 |
+
# Prepare the model for quantization-aware training
|
333 |
+
torch.quantization.prepare_qat(model, inplace=True)
|
334 |
+
# ... (Train the model using quantization-aware training)
|
335 |
+
# Convert the model to quantized form after training
|
336 |
+
torch.quantization.convert(model, inplace=True)
|
337 |
+
return model
|
338 |
+
|
339 |
+
def use_gradient_checkpointing(model):
|
340 |
+
# Enable gradient checkpointing for the model
|
341 |
+
def custom_forward(*inputs):
|
342 |
+
return checkpoint(model, *inputs)
|
343 |
+
model.forward = custom_forward
|
344 |
+
return model
|
345 |
+
|
346 |
+
def use_model_pruning(model, prune_amount=0.1):
|
347 |
+
# Apply pruning to the model
|
348 |
+
return prune_model(model, amount=prune_amount)
|
349 |
+
|
350 |
+
def use_distillation_then_pruning(model, teacher_model, prune_amount=0.1):
|
351 |
+
# Apply knowledge distillation followed by pruning
|
352 |
+
model = use_knowledge_distillation(model, teacher_model)
|
353 |
+
model = prune_model(model, amount=prune_amount)
|
354 |
+
return model
|
355 |
+
|
356 |
+
def use_channel_pruning(model, prune_amount=0.1):
|
357 |
+
# Apply channel pruning to convolutional layers in the model
|
358 |
+
for module in model.modules():
|
359 |
+
if isinstance(module, torch.nn.Conv2d):
|
360 |
+
# Apply L1 structured pruning to the convolutional layer's weight
|
361 |
+
prune.ln_structured(module, name="weight", amount=prune_amount, n=2, dim=0)
|
362 |
+
# Remove the pruned weights
|
363 |
+
prune.remove(module, 'weight')
|
364 |
+
return model
|
365 |
+
|
366 |
+
def use_sparse_tensors(model, sparsity_threshold=0.01):
|
367 |
+
# Convert dense tensors to sparse tensors based on a sparsity threshold
|
368 |
+
for name, param in model.named_parameters():
|
369 |
+
if param.dim() >= 2 and param.is_floating_point():
|
370 |
+
# Convert the parameter to a sparse tensor
|
371 |
+
sparse_param = param.to_sparse()
|
372 |
+
# Set values below the threshold to 0 in the sparse tensor
|
373 |
+
sparse_param._values()[sparse_param._values().abs() < sparsity_threshold] = 0
|
374 |
+
# Convert the sparse tensor back to a dense tensor
|
375 |
+
param.data = sparse_param.to_dense()
|
376 |
+
return model
|
377 |
+
|
378 |
+
def use_hardware_acceleration(model):
|
379 |
+
# Hardware acceleration is usually handled automatically by the deep learning framework
|
380 |
+
return model
|
381 |
+
|
382 |
+
def process_model(model_id, q_method, use_imatrix, imatrix_q_method, private_repo, train_data_file, split_model, split_max_tensors, split_max_size,
|
383 |
+
oauth_token: gr.OAuthToken | None):
|
384 |
+
# Check if the user is logged in
|
385 |
if oauth_token.token is None:
|
386 |
raise ValueError("You must be logged in to use GGUF-my-repo")
|
387 |
+
|
388 |
+
# Extract the model name from the model ID
|
389 |
model_name = model_id.split('/')[-1]
|
390 |
+
# Define the filename for the FP16 GGUF model
|
391 |
fp16 = f"{model_name}.fp16.gguf"
|
392 |
|
393 |
try:
|
394 |
+
# Initialize the Hugging Face API
|
395 |
api = HfApi(token=oauth_token.token)
|
396 |
+
|
397 |
+
# Define the file patterns to download from the repository
|
398 |
dl_pattern = ["*.safetensors", "*.bin", "*.pt", "*.onnx", "*.h5", "*.tflite", "*.ckpt", "*.pb", "*.tar", "*.xml", "*.caffemodel", "*.md", "*.json", "*.model"]
|
399 |
pattern = "*.safetensors" if any(file.path.endswith(".safetensors") for file in api.list_repo_tree(repo_id=model_id, recursive=True)) else "*.bin"
|
400 |
dl_pattern += pattern
|
401 |
+
|
402 |
+
# Download the model files from the Hugging Face repository
|
403 |
api.snapshot_download(repo_id=model_id, local_dir=model_name, local_dir_use_symlinks=False, allow_patterns=dl_pattern)
|
404 |
+
|
405 |
+
# Define the command to convert the model to FP16 GGUF format
|
406 |
conversion_script = "convert_hf_to_gguf.py"
|
407 |
fp16_conversion = f"python llama.cpp/{conversion_script} {model_name} --outtype f16 --outfile {fp16}"
|
408 |
+
|
409 |
+
# Execute the conversion command
|
410 |
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
|
411 |
+
|
412 |
+
# Check if the conversion was successful
|
413 |
if result.returncode != 0:
|
414 |
raise Exception(f"Error converting to fp16: {result.stderr}")
|
415 |
+
|
416 |
+
# Load the model
|
417 |
+
config = AutoConfig.from_pretrained(model_name)
|
418 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, config=config, torch_dtype=torch.float16)
|
419 |
+
|
420 |
+
# Apply model optimization techniques
|
421 |
+
model = optimize_model_resources(model)
|
422 |
+
model = apply_quantization(model, use_int8_inference=True)
|
423 |
+
model = reduce_layers(model, reduction_factor=0.5)
|
424 |
+
model = use_smaller_embeddings(model, reduction_factor=0.75)
|
425 |
+
model = use_fp16_embeddings(model)
|
426 |
+
model = quantize_embeddings(model)
|
427 |
+
model = use_bnb_f16(model)
|
428 |
+
model = use_group_quantization(model)
|
429 |
+
model = apply_layer_norm_trick(model)
|
430 |
+
model = use_selective_quantization(model)
|
431 |
+
model = use_mixed_precision(model)
|
432 |
+
model = use_pruning_after_training(model, prune_amount=0.1)
|
433 |
+
teacher_model = deepcopy(model) # Create a copy for knowledge distillation
|
434 |
+
model = use_knowledge_distillation(model, teacher_model)
|
435 |
+
model = use_weight_sharing(model)
|
436 |
+
model = use_low_rank_approximation(model, rank_factor=0.5)
|
437 |
+
model = use_quantization_aware_training(model)
|
438 |
+
model = use_gradient_checkpointing(model)
|
439 |
+
model = use_channel_pruning(model, prune_amount=0.1)
|
440 |
+
model = use_sparse_tensors(model, sparsity_threshold=0.01)
|
441 |
+
model = use_hashing_trick(model, num_hashes=1024)
|
442 |
+
|
443 |
+
# Save the optimized model
|
444 |
+
model.save_pretrained(model_name)
|
445 |
+
|
446 |
+
# Define the path to the importance matrix file
|
447 |
imatrix_path = "llama.cpp/imatrix.dat"
|
448 |
+
|
449 |
+
# Generate the importance matrix if the use_imatrix flag is set
|
450 |
if use_imatrix:
|
451 |
if train_data_file:
|
452 |
train_data_path = train_data_file.name
|
453 |
else:
|
454 |
train_data_path = "groups_merged.txt"
|
455 |
+
# Check if the training data file exists
|
456 |
if not os.path.isfile(train_data_path):
|
457 |
raise Exception(f"Training data file not found: {train_data_path}")
|
458 |
+
# Generate the importance matrix
|
459 |
generate_importance_matrix(fp16, train_data_path)
|
460 |
+
|
461 |
+
# Get the username of the logged-in user
|
462 |
username = whoami(oauth_token.token)["name"]
|
463 |
+
|
464 |
+
# Define the filename for the quantized GGUF model
|
465 |
quantized_gguf_name = f"{model_name.lower()}-{imatrix_q_method.lower()}-imat.gguf" if use_imatrix else f"{model_name.lower()}-{q_method.lower()}.gguf"
|
466 |
quantized_gguf_path = quantized_gguf_name
|
467 |
+
|
468 |
+
# Construct the command to quantize the model using llama.cpp
|
469 |
if use_imatrix:
|
470 |
quantise_ggml = f"./llama.cpp/llama-quantize --imatrix {imatrix_path} {fp16} {quantized_gguf_path} {imatrix_q_method}"
|
471 |
else:
|
472 |
quantise_ggml = f"./llama.cpp/llama-quantize {fp16} {quantized_gguf_path} {q_method}"
|
473 |
+
|
474 |
+
# Execute the quantization command
|
475 |
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
|
476 |
+
|
477 |
+
# Check if the quantization was successful
|
478 |
if result.returncode != 0:
|
479 |
raise Exception(f"Error quantizing: {result.stderr}")
|
480 |
+
|
481 |
+
# Verify the processed model
|
482 |
+
try:
|
483 |
+
# Run the llama.cpp binary with the quantized model and a test prompt
|
484 |
+
subprocess.run(["llama.cpp/llama", "-m", quantized_gguf_path, "-p", "Test prompt"], check=True)
|
485 |
+
except Exception as e:
|
486 |
+
raise Exception(f"Model verification failed: {e}")
|
487 |
+
|
488 |
+
# Create a new Hugging Face repository for the quantized model
|
489 |
new_repo_url = api.create_repo(repo_id=f"{username}/{model_name}-{imatrix_q_method if use_imatrix else q_method}-GGUF", exist_ok=True, private=private_repo)
|
490 |
new_repo_id = new_repo_url.repo_id
|
491 |
+
|
492 |
+
# Load the model card from the original model
|
493 |
try:
|
494 |
card = ModelCard.load(model_id, token=oauth_token.token)
|
495 |
except:
|
496 |
+
# Create an empty model card if loading fails
|
497 |
card = ModelCard("")
|
498 |
+
|
499 |
+
# Add tags to the model card
|
500 |
if card.data.tags is None:
|
501 |
card.data.tags = []
|
502 |
card.data.tags.append("llama-cpp")
|
503 |
card.data.tags.append("gguf-my-repo")
|
504 |
+
|
505 |
+
# Set the base model in the model card
|
506 |
card.data.base_model = model_id
|
507 |
+
|
508 |
+
# Set the model card text
|
509 |
card.text = dedent(
|
510 |
f"""
|
511 |
# {new_repo_id}
|
|
|
550 |
```
|
551 |
"""
|
552 |
)
|
553 |
+
# Save the model card to a file
|
554 |
card.save(f"README.md")
|
555 |
|
556 |
+
# Upload the quantized model to the Hugging Face repository
|
557 |
if split_model:
|
558 |
split_upload_model(quantized_gguf_path, new_repo_id, oauth_token, split_max_tensors, split_max_size)
|
559 |
else:
|
|
|
562 |
except Exception as e:
|
563 |
raise Exception(f"Error uploading quantized model: {e}")
|
564 |
|
565 |
+
# Upload the importance matrix file if it exists
|
566 |
if os.path.isfile(imatrix_path):
|
567 |
try:
|
568 |
api.upload_file(path_or_fileobj=imatrix_path, path_in_repo="imatrix.dat", repo_id=new_repo_id)
|
569 |
except Exception as e:
|
570 |
raise Exception(f"Error uploading imatrix.dat: {e}")
|
571 |
|
572 |
+
# Upload the model card file
|
573 |
api.upload_file(path_or_fileobj=f"README.md", path_in_repo=f"README.md", repo_id=new_repo_id)
|
574 |
+
|
575 |
+
# Return a message with a link to the new repository
|
576 |
return (f'Find your repo <a href=\'{new_repo_url}\' target="_blank" style="text-decoration:underline">here</a>', "llama.png")
|
577 |
except Exception as e:
|
578 |
+
# Return an error message if an exception occurs
|
579 |
return (f"Error: {e}", "error.png")
|
580 |
finally:
|
581 |
+
# Remove the downloaded model directory
|
582 |
shutil.rmtree(model_name, ignore_errors=True)
|
583 |
|
584 |
+
# Define the CSS styles for the Gradio interface
|
585 |
css="""/* Custom CSS to allow scrolling */ .gradio-container {overflow-y: auto;}"""
|
586 |
+
|
587 |
+
# Create the Gradio interface
|
588 |
with gr.Blocks(css=css) as demo:
|
589 |
+
# Display a message indicating that the user must be logged in
|
590 |
gr.Markdown("You must be logged in to use GGUF-my-repo.")
|
591 |
+
# Add a login button
|
592 |
gr.LoginButton(min_width=250)
|
593 |
+
# Add a search bar for Hugging Face model IDs
|
594 |
model_id = HuggingfaceHubSearch(label="Hub Model ID", placeholder="Search for model id on Huggingface", search_type="model")
|
595 |
+
|
596 |
+
# Quantization Options
|
597 |
+
# Dropdown menu for selecting the quantization method
|
598 |
+
q_method = gr.Dropdown(["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
|
599 |
+
label="Quantization Method", info="GGML quantization type", value="Q2_K", filterable=False, visible=True)
|
600 |
+
# Dropdown menu for selecting the imatrix quantization method
|
601 |
+
imatrix_q_method = gr.Dropdown(["IQ1", "IQ1_S", "IQ1_XXS", "IQ2_S", "IQ2_XXS", "IQ3_M", "IQ3_XXS", "Q4_K_M", "Q4_K_S", "IQ4_NL", "IQ4_XS", "Q5_K_M", "Q5_K_S"],
|
602 |
+
label="Imatrix Quantization Method", info="GGML imatrix quants type", value="IQ4_NL", filterable=False, visible=False)
|
603 |
+
# Checkbox for enabling imatrix quantization
|
604 |
use_imatrix = gr.Checkbox(value=False, label="Use Imatrix Quantization", info="Use importance matrix for quantization.")
|
605 |
+
# File upload component for the training data file
|
606 |
train_data_file = gr.File(label="Training Data File", file_types=["txt"], visible=False)
|
607 |
+
|
608 |
+
# Repo Options
|
609 |
+
# Checkbox for creating a private repository
|
610 |
+
private_repo = gr.Checkbox(value=False, label="Private Repo", info="Create a private repo under your username.")
|
611 |
+
# Checkbox for splitting the model into shards
|
612 |
split_model = gr.Checkbox(value=False, label="Split Model", info="Shard the model using gguf-split.")
|
613 |
+
# Number input for the maximum number of tensors per shard
|
614 |
split_max_tensors = gr.Number(value=256, label="Max Tensors per File", info="Maximum number of tensors per file when splitting model.", visible=False)
|
615 |
+
# Textbox for the maximum file size of each shard
|
616 |
split_max_size = gr.Textbox(label="Max File Size", info="Maximum file size when splitting model (--split-max-size). May leave empty to use the default.", visible=False)
|
617 |
|
618 |
+
# Dynamically show/hide options based on selections
|
619 |
+
# Show/hide the quantization method dropdown based on the use_imatrix checkbox
|
620 |
use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=not use_imatrix), inputs=use_imatrix, outputs=q_method)
|
621 |
+
# Show/hide the imatrix quantization method dropdown based on the use_imatrix checkbox
|
622 |
use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=imatrix_q_method)
|
623 |
+
# Show/hide the training data file upload component based on the use_imatrix checkbox
|
624 |
use_imatrix.change(fn=lambda use_imatrix: gr.update(visible=use_imatrix), inputs=use_imatrix, outputs=train_data_file)
|
625 |
+
# Show/hide the maximum tensors per file number input based on the split_model checkbox
|
626 |
split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_tensors)
|
627 |
+
# Show/hide the maximum file size textbox based on the split_model checkbox
|
628 |
split_model.change(fn=lambda split_model: gr.update(visible=split_model), inputs=split_model, outputs=split_max_size)
|
629 |
|
630 |
+
# Define the Gradio interface
|
631 |
iface = gr.Interface(
|
632 |
+
fn=process_model, # The function to call when the interface is submitted
|
633 |
inputs=[
|
634 |
+
model_id, # The Hugging Face model ID
|
635 |
+
q_method, # The quantization method
|
636 |
+
use_imatrix, # Whether to use imatrix quantization
|
637 |
+
imatrix_q_method, # The imatrix quantization method
|
638 |
+
private_repo, # Whether to create a private repository
|
639 |
+
train_data_file, # The training data file
|
640 |
+
split_model, # Whether to split the model into shards
|
641 |
+
split_max_tensors, # The maximum number of tensors per shard
|
642 |
+
split_max_size # The maximum file size of each shard
|
643 |
],
|
644 |
outputs=[
|
645 |
+
gr.Markdown(label="output"), # A Markdown component to display the output message
|
646 |
+
gr.Image(show_label=False), # An image component to display the output image
|
647 |
],
|
648 |
+
title="Create your own GGUF Quants, blazingly fast ⚡!", # The title of the interface
|
649 |
+
description="The space takes an HF repo as an input, quantizes it and creates a Public repo containing the selected quant under your HF user namespace.", # The description of the interface
|
650 |
+
api_name=False # Whether to expose the interface as an API
|
651 |
)
|
652 |
|
653 |
+
# Define a function to restart the Gradio space
|
654 |
def restart_space():
|
655 |
+
# Restart the space using the Hugging Face API
|
656 |
HfApi().restart_space(repo_id="Ffftdtd5dtft/gguf-my-repo", token=HF_TOKEN, factory_reboot=True)
|
657 |
|
658 |
+
# Create a background scheduler
|
659 |
scheduler = BackgroundScheduler()
|
660 |
+
# Add a job to restart the space every 6 hours (21600 seconds)
|
661 |
scheduler.add_job(restart_space, "interval", seconds=21600)
|
662 |
+
# Start the scheduler
|
663 |
scheduler.start()
|
664 |
|
665 |
+
# Launch the Gradio interface with queuing and debugging enabled
|
666 |
demo.queue(default_concurrency_limit=1, max_size=5).launch(debug=True, show_api=False)
|