Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
|
4 |
+
model_name = "meta-llama/Meta-Llama-3-8B"
|
5 |
+
|
6 |
+
# Tokenizer ve modeli Hugging Face'den yükleyin
|
7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
8 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
9 |
+
|
10 |
+
# Streamlit arayüzünü oluşturma
|
11 |
+
st.title("Text Generation with LLaMA 3 8B")
|
12 |
+
prompt = st.text_input("Enter your prompt:")
|
13 |
+
|
14 |
+
if st.button("Generate"):
|
15 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
16 |
+
outputs = model.generate(inputs["input_ids"], max_length=100)
|
17 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
18 |
+
st.text_area("Generated Text", value=generated_text, height=200)
|