FerdiErs commited on
Commit
0a7a566
·
1 Parent(s): b40024f

Update visualization explanation

Browse files
Files changed (1) hide show
  1. eda.py +6 -4
eda.py CHANGED
@@ -14,7 +14,7 @@ def run():
14
  st.title('Customer Churn Predictor')
15
 
16
  #Sub header
17
- st.subheader('Description for Customer Churn Predicto')
18
 
19
  # Insert Gambar
20
  image = Image.open('music.jpg')
@@ -22,8 +22,8 @@ def run():
22
 
23
  #description
24
  st.write('The goals of this churn estimator')
25
- st.write('Dengar adalah sebuah platform streaming music yang ingin memprediksi customer yang akan churn sehingga meminta bantuan data scientist untuk membuat model dalam melakukan prediksi.')
26
- st.write('Dengan model ini diharapkan dengar dapat memprediksi customer churn atau tidak sehingga bisa lebih berfokus pada tujuannya.')
27
  st.markdown('---')
28
 
29
  st.write('This page is created to show the visualization of the dataset')
@@ -71,6 +71,7 @@ def run():
71
 
72
  #Age Distribution
73
  plot_hist(data=dup['age'], title='Age distribution', x_label='age')
 
74
 
75
  #Time Spent
76
  plot_hist(data=dup['avg_time_spent'], title='Time Spent', x_label='avg_time_spent')
@@ -91,6 +92,7 @@ def run():
91
  plt.title('Customer Region')
92
  plt.axis('equal')
93
  st.pyplot(fig)
 
94
 
95
  #Memberhsip based on Region
96
  plot_countplot_with_numbers(x='membership_category',hue='region_category', title='Memberhsip based on Region', data=dup, palette='flare', figsize=(7, 5))
@@ -108,7 +110,7 @@ def run():
108
  plt.title('Churn Risk')
109
  plt.axis('equal')
110
  st.pyplot(fig)
111
-
112
 
113
 
114
  #churn risk based on gender
 
14
  st.title('Customer Churn Predictor')
15
 
16
  #Sub header
17
+ st.subheader('Description for Customer Churn Predictor')
18
 
19
  # Insert Gambar
20
  image = Image.open('music.jpg')
 
22
 
23
  #description
24
  st.write('The goals of this churn estimator')
25
+ st.write('Dengar is a music streaming platform that ask data scientist to predict will the customer churn')
26
+ st.write('With this model we hope Dengar will be more focused with their goals')
27
  st.markdown('---')
28
 
29
  st.write('This page is created to show the visualization of the dataset')
 
71
 
72
  #Age Distribution
73
  plot_hist(data=dup['age'], title='Age distribution', x_label='age')
74
+ st.write('We can see that dengar had a distribution of age from 10-60')
75
 
76
  #Time Spent
77
  plot_hist(data=dup['avg_time_spent'], title='Time Spent', x_label='avg_time_spent')
 
92
  plt.title('Customer Region')
93
  plt.axis('equal')
94
  st.pyplot(fig)
95
+ st.write('We can see that dengar had 3 region with the most users from town')
96
 
97
  #Memberhsip based on Region
98
  plot_countplot_with_numbers(x='membership_category',hue='region_category', title='Memberhsip based on Region', data=dup, palette='flare', figsize=(7, 5))
 
110
  plt.title('Churn Risk')
111
  plt.axis('equal')
112
  st.pyplot(fig)
113
+ st.write('We can see from the data that most users in Dengar will churn')
114
 
115
 
116
  #churn risk based on gender