Spaces:
Runtime error
Runtime error
Update visualization explanation
Browse files
eda.py
CHANGED
@@ -14,7 +14,7 @@ def run():
|
|
14 |
st.title('Customer Churn Predictor')
|
15 |
|
16 |
#Sub header
|
17 |
-
st.subheader('Description for Customer Churn
|
18 |
|
19 |
# Insert Gambar
|
20 |
image = Image.open('music.jpg')
|
@@ -22,8 +22,8 @@ def run():
|
|
22 |
|
23 |
#description
|
24 |
st.write('The goals of this churn estimator')
|
25 |
-
st.write('Dengar
|
26 |
-
st.write('
|
27 |
st.markdown('---')
|
28 |
|
29 |
st.write('This page is created to show the visualization of the dataset')
|
@@ -71,6 +71,7 @@ def run():
|
|
71 |
|
72 |
#Age Distribution
|
73 |
plot_hist(data=dup['age'], title='Age distribution', x_label='age')
|
|
|
74 |
|
75 |
#Time Spent
|
76 |
plot_hist(data=dup['avg_time_spent'], title='Time Spent', x_label='avg_time_spent')
|
@@ -91,6 +92,7 @@ def run():
|
|
91 |
plt.title('Customer Region')
|
92 |
plt.axis('equal')
|
93 |
st.pyplot(fig)
|
|
|
94 |
|
95 |
#Memberhsip based on Region
|
96 |
plot_countplot_with_numbers(x='membership_category',hue='region_category', title='Memberhsip based on Region', data=dup, palette='flare', figsize=(7, 5))
|
@@ -108,7 +110,7 @@ def run():
|
|
108 |
plt.title('Churn Risk')
|
109 |
plt.axis('equal')
|
110 |
st.pyplot(fig)
|
111 |
-
|
112 |
|
113 |
|
114 |
#churn risk based on gender
|
|
|
14 |
st.title('Customer Churn Predictor')
|
15 |
|
16 |
#Sub header
|
17 |
+
st.subheader('Description for Customer Churn Predictor')
|
18 |
|
19 |
# Insert Gambar
|
20 |
image = Image.open('music.jpg')
|
|
|
22 |
|
23 |
#description
|
24 |
st.write('The goals of this churn estimator')
|
25 |
+
st.write('Dengar is a music streaming platform that ask data scientist to predict will the customer churn')
|
26 |
+
st.write('With this model we hope Dengar will be more focused with their goals')
|
27 |
st.markdown('---')
|
28 |
|
29 |
st.write('This page is created to show the visualization of the dataset')
|
|
|
71 |
|
72 |
#Age Distribution
|
73 |
plot_hist(data=dup['age'], title='Age distribution', x_label='age')
|
74 |
+
st.write('We can see that dengar had a distribution of age from 10-60')
|
75 |
|
76 |
#Time Spent
|
77 |
plot_hist(data=dup['avg_time_spent'], title='Time Spent', x_label='avg_time_spent')
|
|
|
92 |
plt.title('Customer Region')
|
93 |
plt.axis('equal')
|
94 |
st.pyplot(fig)
|
95 |
+
st.write('We can see that dengar had 3 region with the most users from town')
|
96 |
|
97 |
#Memberhsip based on Region
|
98 |
plot_countplot_with_numbers(x='membership_category',hue='region_category', title='Memberhsip based on Region', data=dup, palette='flare', figsize=(7, 5))
|
|
|
110 |
plt.title('Churn Risk')
|
111 |
plt.axis('equal')
|
112 |
st.pyplot(fig)
|
113 |
+
st.write('We can see from the data that most users in Dengar will churn')
|
114 |
|
115 |
|
116 |
#churn risk based on gender
|