federico
Starting commint, requirements missing
9d11120
raw
history blame
27.8 kB
import cv2
import os
import json
import numpy as np
from math import cos, sin, pi
from utils.labels import coco_category_index, rgb_colors, color_pose, color_pose_normalized, pose_id_part, face_category_index, body_parts_openpose, body_parts, face_points, face_points_openpose, pose_id_part_zedcam, face_points_zedcam, body_parts_zedcam
# from src.utils.my_utils import fit_plane_least_square # , retrieve_line_from_two_points
def percentage_to_pixel(shape, bb_boxes, bb_boxes_scores, key_points=None, key_points_score=None):
"""
Convert the detections from percentage to pixels coordinates; it works both for the bounding boxes and for the key points if passed
Args:
:img_shape (tuple): the shape of the image
:bb_boxes (numpy.ndarray): list of list each one representing the bounding box coordinates expressed in percentage [y_min_perc, x_min_perc, y_max_perc, x_max_perc]
:bb_boxes_scores (numpy.ndarray): list of score for each bounding box in range [0, 1]
:key_points (numpy.ndarray): list of list of list each one representing the key points coordinates expressed in percentage [y_perc, x_perc]
:key_points_score (numpy.ndarray): list of list each one representing the score associated to each key point in range [0, 1]
Returns:
:det (numpy.ndarray): list of lists each one representing the bounding box coordinates in pixels and the score associated to each bounding box [x_min, y_min, x_max, y_max, score]
:kpt (list): list of lists each one representing the key points detected in pixels and the score associated to each point [x, y, score]
"""
im_width, im_height = shape[1], shape[0]
det, kpt = [], []
if key_points is not None:
key_points = key_points
key_points_score = key_points_score
for i, _ in enumerate(bb_boxes):
y_min, x_min, y_max, x_max = bb_boxes[i]
x_min_rescaled, x_max_rescaled, y_min_rescaled, y_max_rescaled = x_min * im_width, x_max * im_width, y_min * im_height, y_max * im_height
det.append([int(x_min_rescaled), int(y_min_rescaled), int(x_max_rescaled), int(y_max_rescaled), bb_boxes_scores[i]])
if key_points is not None:
aux_list = []
for n, key_point in enumerate(key_points[i]): # y x
aux = [int(key_point[0] * im_height), int(key_point[1] * im_width), key_points_score[i][n]]
aux_list.append(aux)
kpt.append(aux_list)
det = np.array(det)
return det, kpt
def draw_detections(image, detections, max_boxes_to_draw, violate=None, couple_points=None, draw_class_score=False):
"""
Given an image and a dictionary of detections this function return the image with the drawings of the bounding boxes (with violations information if specified)
Args:
:img (numpy.ndarray): The image that is given as input to the object detection model
:detections (dict): The dictionary with the detections information (detection_classes, detection_boxes, detection_scores,
detection_keypoint_scores, detection_keypoints, detection_boxes_centroid)
:max_boxes_to_draw (int): The maximum number of bounding boxes to draw
:violate (set): The indexes of detections (sorted) that violate the minimum distance computed by my_utils.compute_distance function
(default is None)
:couple_points (list): A list of tuples each one containing the couple of indexes that violate the minimum distance (used to draw lines in
between to bounding boxes)
(default is None)
:draw_class_score (bool): If this value is set to True, in the returned image will be drawn the category and the score over each bounding box
(default is False)
Returns:
:img_with_drawings (numpy.ndarray): The image with the bounding boxes of each detected objects and optionally with the situations of violation
"""
im_width, im_height = image.shape[1], image.shape[0]
img_with_drawings = image.copy()
classes = detections['detection_classes']
boxes = detections['detection_boxes']
scores = detections['detection_scores']
centroids = detections['detection_boxes_centroid']
red = (0, 0, 255)
i = 0
while i < max_boxes_to_draw and i < len(classes):
[y_min, x_min, y_max, x_max] = boxes[i]
(x_min_rescaled, x_max_rescaled, y_min_rescaled, y_max_rescaled) = (x_min * im_width, x_max * im_width, y_min * im_height, y_max * im_height)
start_point, end_point = (int(x_max_rescaled), int(y_max_rescaled)), (int(x_min_rescaled), int(y_min_rescaled))
# [cx, cy] = centroids[i]
# (cx_rescaled, cy_rescaled) = (int(cx * im_width), int(cy * im_height))
color = rgb_colors[classes[i]]
if violate:
if i in violate:
color = red
cv2.rectangle(img_with_drawings, start_point, end_point, color, 2)
# cv2.circle(img_with_drawings, (cx_rescaled, cy_rescaled), 2, color, 2)
if draw_class_score:
cv2.rectangle(img_with_drawings, end_point, (start_point[0], end_point[1] - 25), rgb_colors[classes[i]], -1)
text = face_category_index[classes[i]]['name'] + " {:.2f}".format(scores[i])
cv2.putText(img_with_drawings, text, end_point, cv2.FONT_HERSHEY_SIMPLEX, 0.8, (0, 0, 0), 2, cv2.LINE_AA)
i += 1
if couple_points and len(centroids) > 1:
for j in range(len(couple_points)):
pt1 = centroids[couple_points[j][0]][0], centroids[couple_points[j][0]][1]
pt2 = centroids[couple_points[j][1]][0], centroids[couple_points[j][1]][1]
cv2.line(img_with_drawings, pt1, pt2, red, 2)
text_location = (int(image.shape[1]-image.shape[1]/4), int(image.shape[0]/17))
font_scale = 0.8 * 1 / (640/image.shape[0])
thickness = int(2 * (image.shape[0]/640))
cv2.putText(img_with_drawings, "# of people : "+str(i), text_location, cv2.FONT_HERSHEY_SIMPLEX, font_scale, red, thickness, cv2.LINE_AA)
return img_with_drawings
def resize_preserving_ar(image, new_shape):
"""
Resize and pad the input image in order to make it usable by an object detection model (e.g. mobilenet 640x640)
Args:
:image (numpy.ndarray): The image that will be resized and padded
:new_shape (tuple): The shape of the image output (height, width)
Returns:
:res_image (numpy.ndarray): The image modified to have the new shape
"""
(old_height, old_width, _) = image.shape
(new_height, new_width) = new_shape
if old_height != old_width: # rectangle
ratio_h, ratio_w = new_height / old_height, new_width / old_width
if ratio_h > ratio_w:
dim = (new_width, int(old_height * ratio_w))
img = cv2.resize(image, dim, interpolation=cv2.INTER_CUBIC)
bottom_padding = int(new_height - int(old_height * ratio_w)) if int(new_height - int(old_height * ratio_w)) >= 0 else 0
img = cv2.copyMakeBorder(img, 0, bottom_padding, 0, 0, cv2.BORDER_CONSTANT)
pad = (0, bottom_padding, dim)
else:
dim = (int(old_width * ratio_h), new_height)
img = cv2.resize(image, dim, interpolation=cv2.INTER_CUBIC)
right_padding = int(new_width - int(old_width * ratio_h)) if int(new_width - int(old_width * ratio_h)) >= 0 else 0
img = cv2.copyMakeBorder(img, 0, 0, 0, right_padding, cv2.BORDER_CONSTANT)
pad = (right_padding, 0, dim)
else: # square
img = cv2.resize(image, new_shape, new_height, new_width)
pad = (0, 0, (new_height, new_width))
return img, pad
def resize_and_padding_preserving_ar(image, new_shape):
""" Resize and pad the input image in order to make it usable by a pose model (e.g. mobilenet-posenet takes as input 257x257 images)
Args:
:image (numpy.ndarray): The image that will be resized and padded
:new_shape (tuple): The shape of the image output
Returns:
:res_image (numpy.ndarray): The image modified to have the new shape
"""
(old_height, old_width, _) = image.shape
(new_height, new_width) = new_shape
if old_height != old_width: # rectangle
ratio_h, ratio_w = new_height / old_height, new_width / old_width
# print(img.shape, "\nRATIO: ", ratio_h, ratio_w)
if ratio_h < ratio_w:
ratio = new_shape[0] / old_height
dim = (int(old_width * ratio), new_width)
img = cv2.resize(image, dim)
right_padding = int(new_width - img.shape[1]) if int(new_width - img.shape[1]) >= 0 else 0
img = cv2.copyMakeBorder(img, 0, 0, 0, right_padding, cv2.BORDER_CONSTANT)
else:
ratio = new_shape[1] / old_width
dim = (new_height, int(old_height * ratio))
img = cv2.resize(image, dim)
bottom_padding = int(new_height - img.shape[0]) if int(new_width - img.shape[0]) >= 0 else 0
img = cv2.copyMakeBorder(img, 0, bottom_padding, 0, 0, cv2.BORDER_CONSTANT)
else: # square
img = cv2.resize(image, new_shape)
img = img.astype(np.float32) / 255.
res_image = np.expand_dims(img, 0)
return res_image
def draw_axis(yaw, pitch, roll, image=None, tdx=None, tdy=None, size=50):
"""
Draw yaw pitch and roll axis on the image if passed as input and returns the vector containing the projection of the vector on the image plane
Args:
:yaw (float): value that represents the yaw rotation of the face
:pitch (float): value that represents the pitch rotation of the face
:roll (float): value that represents the roll rotation of the face
:image (numpy.ndarray): The image where the three vector will be printed
(default is None)
:tdx (float64): x coordinate from where the vector drawing start expressed in pixel coordinates
(default is None)
:tdy (float64): y coordinate from where the vector drawing start expressed in pixel coordinates
(default is None)
:size (int): value that will be multiplied to each x, y and z value that enlarge the "vector drawing"
(default is 50)
Returns:
:list_projection_xy (list): list containing the unit vector [x, y, z]
"""
pitch = pitch * np.pi / 180
yaw = -(yaw * np.pi / 180)
roll = roll * np.pi / 180
if tdx != None and tdy != None:
tdx = tdx
tdy = tdy
else:
height, width = image.shape[:2]
tdx = width / 2
tdy = height / 2
# PROJECT 3D TO 2D XY plane (Z = 0)
# X-Axis pointing to right. drawn in red
x1 = size * (cos(yaw) * cos(roll)) + tdx
y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy
# Y-Axis | drawn in green
x2 = size * (-cos(yaw) * sin(roll)) + tdx
y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy
# Z-Axis (out of the screen) drawn in yellow #it was blue
x3 = size * (sin(yaw)) + tdx
y3 = size * (-cos(yaw) * sin(pitch)) + tdy
z3 = size * (cos(pitch) * cos(yaw)) + tdy
if image is not None:
cv2.line(image, (int(tdx), int(tdy)), (int(x1), int(y1)), (0, 0, 255), 2) # BGR->red
cv2.line(image, (int(tdx), int(tdy)), (int(x2), int(y2)), (0, 255, 0), 2) # BGR->green
cv2.line(image, (int(tdx), int(tdy)), (int(x3), int(y3)), (0, 255, 255), 2) # BGR->blue
list_projection_xy = [sin(yaw), -cos(yaw) * sin(pitch)]
return list_projection_xy
def visualize_vector(image, center, unit_vector, title="", color=(0, 0, 255)):
"""
Draw the projected vector on the image plane and return the image
Args:
:image (numpy.ndarray): The image where the vector will be printed
:center (list): x, y coordinates in pixels of the starting point from where the vector is drawn
:unit_vector (list): vector of the gaze in the form [gx, gy]
:title (string): title displayed in the imshow function
(default is "")
:color (tuple): color value of the vector drawn on the image
(default is (0, 0, 255))
Returns:
:result (numpy.ndarray): The image with the vectors drawn
"""
unit_vector_draw = [unit_vector[0] * image.shape[0]*0.15, unit_vector[1] * image.shape[0]*0.15]
point = [center[0] + unit_vector_draw[0], center[1] + unit_vector_draw[1]]
result = cv2.arrowedLine(image, (int(center[0]), int(center[1])), (int(point[0]), int(point[1])), color, thickness=4, tipLength=0.3)
return result
def draw_key_points_pose(image, kpt, openpose=False):
"""
Draw the key points and the lines connecting them; it expects the output of CenterNet (not OpenPose format)
Args:
:image (numpy.ndarray): The image where the lines connecting the key points will be printed
:kpt (list): list of lists of points detected for each person [[x1, y1, c1], [x2, y2, c2],...] where x and y represent the coordinates of each
point while c represents the confidence
Returns:
:img (numpy.ndarray): The image with the drawings of lines and key points
"""
parts = body_parts_openpose if openpose else body_parts
kpt_score = None
threshold = 0.4
overlay = image.copy()
face_pts = face_points_openpose if openpose else face_points
for j in range(len(kpt)):
# 0 nose, 1/2 left/right eye, 3/4 left/right ear
color = color_pose["blue"]
if j == face_pts[0]:
color = color_pose["purple"]# naso
if j == face_pts[1]:
color = color_pose["green"]#["light_pink"]#Leye
if j == face_pts[2]:
color = color_pose["dark_pink"]#Reye
if j == face_pts[3]:
color = color_pose["light_orange"]#LEar
if j == face_pts[4]:
color = color_pose["yellow"]# REar
if openpose:
cv2.circle(image, (int(kpt[j][0]), int(kpt[j][1])), 1, color, 2)
else:
cv2.circle(image, (int(kpt[j][1]), int(kpt[j][0])), 1, color, 2)
# cv2.putText(img, pose_id_part[i], (int(kpts[j][i, 1] * img.shape[1]), int(kpts[j][i, 0] * img.shape[0])), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1, cv2.LINE_AA)
for part in parts:
if int(kpt[part[0]][1]) != 0 and int(kpt[part[0]][0]) != 0 and int(kpt[part[1]][1]) != 0 and int(
kpt[part[1]][0]) != 0:
if openpose:
cv2.line(overlay, (int(kpt[part[0]][0]), int(kpt[part[0]][1])), (int(kpt[part[1]][0]), int(kpt[part[1]][1])), (255, 255, 255), 2)
else:
cv2.line(overlay, (int(kpt[part[0]][1]), int(kpt[part[0]][0])),
(int(kpt[part[1]][1]), int(kpt[part[1]][0])), (255, 255, 255), 2)
alpha = 0.4
image = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
return image
def draw_key_points_pose_zedcam(image, kpt, openpose=True):
"""
Draw the key points and the lines connecting them; it expects the output of CenterNet (not OpenPose format)
Args:
:image (numpy.ndarray): The image where the lines connecting the key points will be printed
:kpt (list): list of lists of points detected for each person [[x1, y1, c1], [x2, y2, c2],...] where x and y represent the coordinates of each
point while c represents the confidence
Returns:
:img (numpy.ndarray): The image with the drawings of lines and key points
"""
parts = body_parts_zedcam
kpt_score = None
threshold = 0.4
overlay = image.copy()
face_pts = face_points_zedcam
for j in range(len(kpt)):
# 0 nose, 1/2 left/right eye, 3/4 left/right ear
color = color_pose["blue"]
if j == face_pts[0]: # naso
color = color_pose["purple"]
if j == face_pts[1]:
color = color_pose["light_pink"]
if j == face_pts[2]:
color = color_pose["dark_pink"]
if j == face_pts[3]:
color = color_pose["light_orange"]
if j == face_pts[4]:
color = color_pose["dark_orange"]
if openpose:
cv2.circle(image, (int(kpt[j][0]), int(kpt[j][1])), 1, color, 2)
else:
cv2.circle(image, (int(kpt[j][1]), int(kpt[j][0])), 1, color, 2)
# cv2.putText(img, pose_id_part[i], (int(kpts[j][i, 1] * img.shape[1]), int(kpts[j][i, 0] * img.shape[0])), cv2.FONT_HERSHEY_SIMPLEX, 0.6, color, 1, cv2.LINE_AA)
for part in parts:
if int(kpt[part[0]][1]) != 0 and int(kpt[part[0]][0]) != 0 and int(kpt[part[1]][1]) != 0 and int(
kpt[part[1]][0]) != 0:
if openpose:
cv2.line(overlay, (int(kpt[part[0]][0]), int(kpt[part[0]][1])), (int(kpt[part[1]][0]), int(kpt[part[1]][1])), (255, 255, 255), 2)
else:
cv2.line(overlay, (int(kpt[part[0]][1]), int(kpt[part[0]][0])),
(int(kpt[part[1]][1]), int(kpt[part[1]][0])), (255, 255, 255), 2)
alpha = 0.4
image = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
return image
def plot_3d_points(list_points):
"""
Plot points in 3D
Args:
:list_points: A list of lists representing the points; each point has (x, y, z) coordinates represented by the first, second and third element of each list
Returns:
"""
if list_points == []:
return
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for point in list_points:
ax.scatter(point[0], point[1], point[2], c=np.array(0), marker='o')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_zlabel('z')
plt.show()
return
def draw_on_img(image, center, id_, res):
"""
Draw arrow illustrating gaze direction on the image
Args:
:image (numpy.ndarray): The image where the vector will be printed
:center (list): x, y coordinates in pixels of the starting point from where the vector is drawn
:id_ (string): title displayed in the imshow function
(default is "")
:res (list): vector of the gaze in the form [gx, gy]
Returns:
:img_arrow (numpy.ndarray): The image with the vector drawn
"""
res[0] *= image.shape[0]
res[1] *= image.shape[1]
norm1 = res / np.linalg.norm(res)
norm_aux = [norm1[0], norm1[1]] # normalized vectors
norm1[0] *= image.shape[0]*0.15
norm1[1] *= image.shape[0]*0.15
point = center + norm1
img_arrow = cv2.arrowedLine(image.copy(), (int(center[1]), int(center[0])), (int(point[1]), int(point[0])), (0, 0, 255), thickness=2, tipLength=0.2)
return img_arrow, [norm_aux, center]
def confusion_matrix(conf_matrix, target_names=None, title="", cmap=None):
"""
Create the image of the confusion matrix given a matrix as input
Args:
:conf_matrix (list): list of lists that represent an MxM matrix e.g. [[v11, v12, v13], [v21, v22, v23], [v31, v32, v33]]
:target_names (list): list of target name of dimension M e.g. [[label1, label2, label3]]
(default is None)
:title (string): title string to be printed in the confusion matrix
(default is "")
:cmap (string): colormap that will be used by the confusion matrix
(default is None)
Returns:
:gbr (numpy.ndarray): The image where the lines connecting the key points will be printed
"""
from laeo_per_frame.interaction_per_frame_uncertainty import LAEO_computation
import matplotlib.pyplot as plt
if not conf_matrix:
return []
# if cmap is None:
# cmap = plt.get_cmap('Blues')
plt.rcParams['xtick.bottom'] = plt.rcParams['xtick.labelbottom'] = False
plt.rcParams['xtick.top'] = plt.rcParams['xtick.labeltop'] = True
fig, ax = plt.subplots(figsize=(6, 4)) # 2, 2, figsize=(6, 4))
cax = ax.imshow(conf_matrix)
for i in range(len(conf_matrix[0])):
for j in range(len(conf_matrix[1])):
ax.text(j, i, str(np.around(conf_matrix[i][j], 3)), va='center', ha='center', color="black")
if target_names is not None:
ax.set_xticks(np.arange(len(target_names)))
ax.set_yticks(np.arange(len(target_names)))
ax.set_xticklabels(target_names)
ax.set_yticklabels(target_names)
plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor")
fig.tight_layout()
fig.colorbar(cax)
# plt.show()
fig.canvas.draw()
width, height = fig.get_size_inches() * fig.get_dpi()
aux_img = np.fromstring(fig.canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3)
gbr = aux_img[..., [2, 0, 1]].copy()
# cv2.imshow("1312", gbr)
# cv2.waitKey(0)
return gbr
def join_images(image1, image2):
"""
Join two images vertically into a new image with the height that is the maximum height of the two images passed as input and the width that is
the sum of the widths of the two images passed as input
Args:
:image1 (numpy.ndarray): The image that will be in the left part of the joined images
:image2 (numpy.ndarray): The image that will be in the right part of the joined images
Returns:
:joined_image (numpy.ndarray): The image that is the results of the merge of the two images passed as input
"""
if type(image1) == list or type(image2) == list:
return None
image1_width, image1_height, image2_width, image2_height = image1.shape[1], image1.shape[0], image2.shape[1], image2.shape[0]
new_shape_height = max(image1_height, image2_height)
new_shape = (new_shape_height, image1_width + image2_width, 3)
joined_image = np.zeros(new_shape, dtype=np.uint8)
joined_image[:image1_height, :image1_width, :] = image1
joined_image[:image2_height, image1_width:, :] = image2
cv2.imshow("", cv2.resize(joined_image, (1200, 500)))
cv2.waitKey(0)
return joined_image
def draw_axis_from_json(img, json_file):
if os.path.isfile(json_file):
cv2.imshow("", img)
cv2.waitKey(0)
with open(json_file) as f:
data = json.load(f)
print(data)
aux = data['people']
for elem in aux:
draw_axis(elem['yaw'][0], elem['pitch'][0], elem['roll'][0], img, elem['center_xy'][0], elem['center_xy'][1])
cv2.imshow("", img)
cv2.waitKey(0)
return
def points_on_circumference(center=(0, 0), r=50, n=100):
return [(center[0] + (cos(2 * pi / n * x) * r), center[1] + (sin(2 * pi / n * x) * r)) for x in range(0, n + 1)]
def draw_cones(yaw, pitch, roll, unc_yaw, unc_pitch, unc_roll, image=None, tdx=None, tdy=None, size=300):
"""
Draw yaw pitch and roll axis on the image if passed as input and returns the vector containing the projection of the vector on the image plane
Args:
:yaw (float): value that represents the yaw rotation of the face
:pitch (float): value that represents the pitch rotation of the face
:roll (float): value that represents the roll rotation of the face
:image (numpy.ndarray): The image where the three vector will be printed
(default is None)
:tdx (float64): x coordinate from where the vector drawing start expressed in pixel coordinates
(default is None)
:tdy (float64): y coordinate from where the vector drawing start expressed in pixel coordinates
(default is None)
:size (int): value that will be multiplied to each x, y and z value that enlarge the "vector drawing"
(default is 50)
Returns:
:list_projection_xy (list): list containing the unit vector [x, y, z]
"""
pitch = pitch * np.pi / 180
yaw = -(yaw * np.pi / 180)
roll = roll * np.pi / 180
if tdx != None and tdy != None:
tdx = tdx
tdy = tdy
else:
height, width = image.shape[:2]
tdx = width / 2
tdy = height / 2
# PROJECT 3D TO 2D XY plane (Z = 0)
# X-Axis pointing to right. drawn in red
x1 = size * (cos(yaw) * cos(roll)) + tdx
y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy
# Y-Axis | drawn in green
x2 = size * (-cos(yaw) * sin(roll)) + tdx
y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy
# Z-Axis (out of the screen) drawn in blue
x3 = size * (sin(yaw)) + tdx
y3 = size * (-cos(yaw) * sin(pitch)) + tdy
z3 = size * (cos(pitch) * cos(yaw)) + tdy
unc_mean = (unc_yaw + unc_pitch + unc_roll) / 3
radius = 12 * unc_mean
overlay = image.copy()
if image is not None:
# cv2.line(image, (int(tdx), int(tdy)), (int(x1), int(y1)), (0, 0, 255), 2)
# cv2.line(image, (int(tdx), int(tdy)), (int(x2), int(y2)), (0, 255, 0), 2)
cv2.line(image, (int(tdx), int(tdy)), (int(x3), int(y3)), (255, 0, 0), 2)
points = points_on_circumference((int(x3), int(y3)), radius, 400)
for point in points:
cv2.line(image, (int(tdx), int(tdy)), (int(point[0]), int(point[1])), (255, 0, 0), 2)
# cv2.circle(image, (int(x3), int(y3)), int(radius), (255, 0, 0), 2)
alpha = 0.5
image = cv2.addWeighted(overlay, alpha, image, 1 - alpha, 0)
# cv2.imshow("cc", image)
# cv2.waitKey(0)
# exit()
list_projection_xy = [sin(yaw), -cos(yaw) * sin(pitch)]
return list_projection_xy, image
def draw_axis_3d(yaw, pitch, roll, image=None, tdx=None, tdy=None, size=50, yaw_uncertainty=-1, pitch_uncertainty=-1, roll_uncertainty=-1):
"""
Draw yaw pitch and roll axis on the image if passed as input and returns the vector containing the projection of the vector on the image plane
Args:
:yaw (float): value that represents the yaw rotation of the face
:pitch (float): value that represents the pitch rotation of the face
:roll (float): value that represents the roll rotation of the face
:image (numpy.ndarray): The image where the three vector will be printed
(default is None)
:tdx (float64): x coordinate from where the vector drawing start expressed in pixel coordinates
(default is None)
:tdy (float64): y coordinate from where the vector drawing start expressed in pixel coordinates
(default is None)
:size (int): value that will be multiplied to each x, y and z value that enlarge the "vector drawing"
(default is 50)
Returns:
:list_projection_xy (list): list containing the unit vector [x, y, z]
"""
pitch = pitch * np.pi / 180
yaw = -(yaw * np.pi / 180)
roll = roll * np.pi / 180
# print(yaw, pitch, roll)
if tdx != None and tdy != None:
tdx = tdx
tdy = tdy
else:
height, width = image.shape[:2]
tdx = width / 2
tdy = height / 2
# PROJECT 3D TO 2D XY plane (Z = 0)
# X-Axis pointing to right. drawn in red
x1 = size * (cos(yaw) * cos(roll)) + tdx
y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy
# Y-Axis | drawn in green
x2 = size * (-cos(yaw) * sin(roll)) + tdx
y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy
# Z-Axis (out of the screen) drawn in blue
x3 = size * (sin(yaw)) + tdx
y3 = size * (-cos(yaw) * sin(pitch)) + tdy
z3 = size * (cos(pitch) * cos(yaw)) + tdy
if image is not None:
cv2.line(image, (int(tdx), int(tdy)), (int(x1), int(y1)), (0, 0, 255), 2)
cv2.line(image, (int(tdx), int(tdy)), (int(x2), int(y2)), (0, 255, 0), 2)
cv2.line(image, (int(tdx), int(tdy)), (int(x3), int(y3)), (255, 0, 0), 2)
return image