Spaces:
Sleeping
Sleeping
import os | |
import logging | |
from dotenv import load_dotenv | |
import streamlit as st | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.vectorstores import FAISS | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain_groq import ChatGroq | |
# Load environment variables | |
load_dotenv() | |
# Set up logging | |
logging.basicConfig( | |
level=logging.INFO, | |
format='%(asctime)s - %(levelname)s - %(message)s' | |
) | |
# Function to extract text from PDF files | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() or "" | |
return text | |
# Function to split the extracted text into chunks | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", | |
chunk_size=1000, | |
chunk_overlap=200, | |
length_function=len | |
) | |
return text_splitter.split_text(text) | |
# Function to create a FAISS vectorstore using Hugging Face embeddings | |
def get_vectorstore(text_chunks): | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
# Function to set up the conversational retrieval chain | |
def get_conversation_chain(vectorstore): | |
try: | |
groq_api_key = os.getenv("GROQ_API_KEY") | |
llm = ChatGroq(model="llama3-8b-8192", api_key=groq_api_key, temperature=0.5) | |
memory = ConversationBufferMemory(memory_key='chat_history', return_messages=True) | |
conversation_chain = ConversationalRetrievalChain.from_llm( | |
llm=llm, | |
retriever=vectorstore.as_retriever(), | |
memory=memory | |
) | |
logging.info("Conversation chain created successfully.") | |
return conversation_chain | |
except Exception as e: | |
logging.error(f"Error creating conversation chain: {e}") | |
st.error("An error occurred while setting up the conversation chain.") | |
# Handle user input | |
def handle_userinput(user_question): | |
if st.session_state.conversation: | |
response = st.session_state.conversation({'question': user_question}) | |
st.session_state.chat_history = response['chat_history'] | |
for i, message in enumerate(st.session_state.chat_history): | |
if i % 2 == 0: | |
st.write(f"*User:* {message.content}") | |
else: | |
st.write(f"*Bot:* {message.content}") | |
else: | |
st.warning("Please process the documents first.") | |
# Main function to run the Streamlit app | |
def main(): | |
load_dotenv() | |
st.set_page_config(page_title="Chat with multiple PDFs", page_icon="π") | |
if "conversation" not in st.session_state: | |
st.session_state.conversation = None | |
if "chat_history" not in st.session_state: | |
st.session_state.chat_history = None | |
st.header("Chat with multiple PDFs π") | |
user_question = st.text_input("Ask a question about your documents:") | |
if user_question: | |
handle_userinput(user_question) | |
with st.sidebar: | |
st.subheader("Your documents") | |
pdf_docs = st.file_uploader( | |
"Upload your PDFs here and click on 'Process'", accept_multiple_files=True | |
) | |
if st.button("Process"): | |
with st.spinner("Processing..."): | |
raw_text = get_pdf_text(pdf_docs) | |
text_chunks = get_text_chunks(raw_text) | |
vectorstore = get_vectorstore(text_chunks) | |
st.session_state.conversation = get_conversation_chain(vectorstore) | |
if __name__ == '__main__': | |
main() | |