Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	Create app.py
Browse files
    	
        app.py
    ADDED
    
    | @@ -0,0 +1,148 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import streamlit as st
         | 
| 2 | 
            +
            from PIL import Image
         | 
| 3 | 
            +
            from diffusers import AutoPipeline, StableDiffusionPipeline, ControlNetModel, DDIMScheduler, LMSDiscreteScheduler, UNet2DConditionModel, DiffusionPipeline
         | 
| 4 | 
            +
            from diffusers.optimization import DDPMScheduler, DDPMSchedulerV2, PNDMScheduler
         | 
| 5 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM, LlamaTokenizerFast, LlamaForCausalLM
         | 
| 6 | 
            +
            from accelerate import Accelerator
         | 
| 7 | 
            +
            import torch
         | 
| 8 | 
            +
            from peft import PeftModel, LoraConfig, get_peft_model, prepare_model_for_int8_training, prepare_model_for_int8_bf16_training
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            # Define a dictionary with all available models, schedulers, features, weights, and adapters
         | 
| 11 | 
            +
            model_dict = {
         | 
| 12 | 
            +
                "Stable Diffusion": {
         | 
| 13 | 
            +
                    "Models": [
         | 
| 14 | 
            +
                        "CompVis/stable-diffusion-v1-4",
         | 
| 15 | 
            +
                        "stabilityai/stable-diffusion-2-1",
         | 
| 16 | 
            +
                        "runwayml/stable-diffusion-v1-5",
         | 
| 17 | 
            +
                        "runwayml/stable-diffusion-inpainting",
         | 
| 18 | 
            +
                        "runwayml/stable-diffusion-video-v1-5",
         | 
| 19 | 
            +
                        "stabilityai/stable-diffusion-2-base"
         | 
| 20 | 
            +
                    ],
         | 
| 21 | 
            +
                    "Schedulers": [
         | 
| 22 | 
            +
                        "DDIMScheduler",
         | 
| 23 | 
            +
                        "LMSDiscreteScheduler"
         | 
| 24 | 
            +
                    ],
         | 
| 25 | 
            +
                    "Features": [
         | 
| 26 | 
            +
                        "Unconditional image generation",
         | 
| 27 | 
            +
                        "Text-to-image",
         | 
| 28 | 
            +
                        "Image-to-image",
         | 
| 29 | 
            +
                        "Inpainting",
         | 
| 30 | 
            +
                        "Text or image-to-video",
         | 
| 31 | 
            +
                        "Depth-to-image"
         | 
| 32 | 
            +
                    ],
         | 
| 33 | 
            +
                    "Adapters": [
         | 
| 34 | 
            +
                        "ControlNet",
         | 
| 35 | 
            +
                        "T2I-Adapter"
         | 
| 36 | 
            +
                    ],
         | 
| 37 | 
            +
                    "Weights": [
         | 
| 38 | 
            +
                        "Stable Diffusion XL",
         | 
| 39 | 
            +
                        "SDXL Turbo",
         | 
| 40 | 
            +
                        "Kandinsky",
         | 
| 41 | 
            +
                        "IP-Adapter",
         | 
| 42 | 
            +
                        "ControlNet",
         | 
| 43 | 
            +
                        "Latent Consistency Model",
         | 
| 44 | 
            +
                        "Textual inversion",
         | 
| 45 | 
            +
                        "Shap-E",
         | 
| 46 | 
            +
                        "DiffEdit",
         | 
| 47 | 
            +
                        "Trajectory Consistency Distillation-LoRA",
         | 
| 48 | 
            +
                        "Stable Video Diffusion",
         | 
| 49 | 
            +
                        "Marigold Computer Vision"
         | 
| 50 | 
            +
                    ]
         | 
| 51 | 
            +
                },
         | 
| 52 | 
            +
                "Llama": {
         | 
| 53 | 
            +
                    "Models": [
         | 
| 54 | 
            +
                        "decapoda-research/llama-7b-hf",
         | 
| 55 | 
            +
                        "decapoda-research/llama-13b-hf",
         | 
| 56 | 
            +
                        "decapoda-research/llama-30b-hf",
         | 
| 57 | 
            +
                        "decapoda-research/llama-65b-hf"
         | 
| 58 | 
            +
                    ],
         | 
| 59 | 
            +
                    "Tokenizers": [
         | 
| 60 | 
            +
                        "LlamaTokenizerFast"
         | 
| 61 | 
            +
                    ],
         | 
| 62 | 
            +
                    "Features": [
         | 
| 63 | 
            +
                        "AutoPipeline",
         | 
| 64 | 
            +
                        "Train a diffusion model",
         | 
| 65 | 
            +
                        "Load LoRAs for inference",
         | 
| 66 | 
            +
                        "Accelerate inference of text-to-image diffusion models",
         | 
| 67 | 
            +
                        "LOAD PIPELINES AND ADAPTERS",
         | 
| 68 | 
            +
                        "Load community pipelines and components",
         | 
| 69 | 
            +
                        "Load schedulers and models",
         | 
| 70 | 
            +
                        "Model files and layouts",
         | 
| 71 | 
            +
                        "Load adapters",
         | 
| 72 | 
            +
                        "Push files to the Hub",
         | 
| 73 | 
            +
                        "GENERATIVE TASKS",
         | 
| 74 | 
            +
                        "Unconditional image generation",
         | 
| 75 | 
            +
                        "Text-to-image",
         | 
| 76 | 
            +
                        "Image-to-image",
         | 
| 77 | 
            +
                        "Inpainting",
         | 
| 78 | 
            +
                        "Text or image-to-video",
         | 
| 79 | 
            +
                        "Depth-to-image",
         | 
| 80 | 
            +
                        "INFERENCE TECHNIQUES",
         | 
| 81 | 
            +
                        "Overview",
         | 
| 82 | 
            +
                        "Distributed inference with multiple GPUs",
         | 
| 83 | 
            +
                        "Merge LoRAs",
         | 
| 84 | 
            +
                        "Scheduler features",
         | 
| 85 | 
            +
                        "Pipeline callbacks",
         | 
| 86 | 
            +
                        "Reproducible pipelines",
         | 
| 87 | 
            +
                        "Controlling image quality",
         | 
| 88 | 
            +
                        "Prompt techniques",
         | 
| 89 | 
            +
                        "ADVANCED INFERENCE",
         | 
| 90 | 
            +
                        "Outpainting",
         | 
| 91 | 
            +
                        "SPECIFIC PIPELINE EXAMPLES",
         | 
| 92 | 
            +
                        "Stable Diffusion XL",
         | 
| 93 | 
            +
                        "SDXL Turbo",
         | 
| 94 | 
            +
                        "Kandinsky",
         | 
| 95 | 
            +
                        "IP-Adapter",
         | 
| 96 | 
            +
                        "ControlNet",
         | 
| 97 | 
            +
                        "T2I-Adapter",
         | 
| 98 | 
            +
                        "Latent Consistency Model",
         | 
| 99 | 
            +
                        "Textual inversion",
         | 
| 100 | 
            +
                        "Shap-E",
         | 
| 101 | 
            +
                        "DiffEdit",
         | 
| 102 | 
            +
                        "Trajectory Consistency Distillation-LoRA",
         | 
| 103 | 
            +
                        "Stable Video Diffusion",
         | 
| 104 | 
            +
                        "Marigold Computer Vision"
         | 
| 105 | 
            +
                    ],
         | 
| 106 | 
            +
                    "Weights": [
         | 
| 107 | 
            +
                        "LoRA weights"
         | 
| 108 | 
            +
                    ]
         | 
| 109 | 
            +
                }
         | 
| 110 | 
            +
            }
         | 
| 111 | 
            +
             | 
| 112 | 
            +
            model_type = st.selectbox("Select a model type:", list(model_dict.keys()))
         | 
| 113 | 
            +
             | 
| 114 | 
            +
            if model_type == "Stable Diffusion":
         | 
| 115 | 
            +
                model = st.selectbox("Select a Stable Diffusion model:", model_dict[model_type]["Models"])
         | 
| 116 | 
            +
                scheduler = st.selectbox("Select a scheduler:", model_dict[model_type]["Schedulers"])
         | 
| 117 | 
            +
                feature = st.selectbox("Select a feature:", model_dict[model_type]["Features"])
         | 
| 118 | 
            +
                adapter = st.selectbox("Select an adapter:", model_dict[model_type]["Adapters"])
         | 
| 119 | 
            +
                weight = st.selectbox("Select a weight:", model_dict[model_type]["Weights"])
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                if st.button("Generate Images"):
         | 
| 122 | 
            +
                    st.write("Generating images...")
         | 
| 123 | 
            +
             | 
| 124 | 
            +
                    pipe = StableDiffusionPipeline.from_pretrained(model)
         | 
| 125 | 
            +
                    pipe.scheduler = eval(scheduler)()
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                    if adapter == "ControlNet":
         | 
| 128 | 
            +
                        controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_openpose")
         | 
| 129 | 
            +
                        pipe = pipe.to_controlnet(controlnet)
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                    # Define the prompt and number of images to generate
         | 
| 132 | 
            +
                    prompt = st.text_input("Enter a prompt:")
         | 
| 133 | 
            +
                    num_images = st.slider("Number of images to generate", min_value=1, max_value=10, value=1)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    # Generate the images
         | 
| 136 | 
            +
                    images = pipe(prompt, num_images=num_images, guidance_scale=7.5).images
         | 
| 137 | 
            +
             | 
| 138 | 
            +
                    # Display the generated images
         | 
| 139 | 
            +
                    cols = st.columns(num_images)
         | 
| 140 | 
            +
                    for i, image in enumerate(images):
         | 
| 141 | 
            +
                        cols[i].image(image, caption=f"Image {i+1}", use_column_width=True)
         | 
| 142 | 
            +
             | 
| 143 | 
            +
            elif model_type == "Llama":
         | 
| 144 | 
            +
                # Llama model implementation goes here
         | 
| 145 | 
            +
             | 
| 146 | 
            +
                # ...
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                # ...
         | 

