Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from PIL import Image
|
| 3 |
+
from diffusers import AutoPipeline, StableDiffusionPipeline, ControlNetModel, DDIMScheduler, LMSDiscreteScheduler, UNet2DConditionModel, DiffusionPipeline
|
| 4 |
+
from diffusers.optimization import DDPMScheduler, DDPMSchedulerV2, PNDMScheduler
|
| 5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoModelForSeq2SeqLM, LlamaTokenizerFast, LlamaForCausalLM
|
| 6 |
+
from accelerate import Accelerator
|
| 7 |
+
import torch
|
| 8 |
+
from peft import PeftModel, LoraConfig, get_peft_model, prepare_model_for_int8_training, prepare_model_for_int8_bf16_training
|
| 9 |
+
|
| 10 |
+
# Define a dictionary with all available models, schedulers, features, weights, and adapters
|
| 11 |
+
model_dict = {
|
| 12 |
+
"Stable Diffusion": {
|
| 13 |
+
"Models": [
|
| 14 |
+
"CompVis/stable-diffusion-v1-4",
|
| 15 |
+
"stabilityai/stable-diffusion-2-1",
|
| 16 |
+
"runwayml/stable-diffusion-v1-5",
|
| 17 |
+
"runwayml/stable-diffusion-inpainting",
|
| 18 |
+
"runwayml/stable-diffusion-video-v1-5",
|
| 19 |
+
"stabilityai/stable-diffusion-2-base"
|
| 20 |
+
],
|
| 21 |
+
"Schedulers": [
|
| 22 |
+
"DDIMScheduler",
|
| 23 |
+
"LMSDiscreteScheduler"
|
| 24 |
+
],
|
| 25 |
+
"Features": [
|
| 26 |
+
"Unconditional image generation",
|
| 27 |
+
"Text-to-image",
|
| 28 |
+
"Image-to-image",
|
| 29 |
+
"Inpainting",
|
| 30 |
+
"Text or image-to-video",
|
| 31 |
+
"Depth-to-image"
|
| 32 |
+
],
|
| 33 |
+
"Adapters": [
|
| 34 |
+
"ControlNet",
|
| 35 |
+
"T2I-Adapter"
|
| 36 |
+
],
|
| 37 |
+
"Weights": [
|
| 38 |
+
"Stable Diffusion XL",
|
| 39 |
+
"SDXL Turbo",
|
| 40 |
+
"Kandinsky",
|
| 41 |
+
"IP-Adapter",
|
| 42 |
+
"ControlNet",
|
| 43 |
+
"Latent Consistency Model",
|
| 44 |
+
"Textual inversion",
|
| 45 |
+
"Shap-E",
|
| 46 |
+
"DiffEdit",
|
| 47 |
+
"Trajectory Consistency Distillation-LoRA",
|
| 48 |
+
"Stable Video Diffusion",
|
| 49 |
+
"Marigold Computer Vision"
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
"Llama": {
|
| 53 |
+
"Models": [
|
| 54 |
+
"decapoda-research/llama-7b-hf",
|
| 55 |
+
"decapoda-research/llama-13b-hf",
|
| 56 |
+
"decapoda-research/llama-30b-hf",
|
| 57 |
+
"decapoda-research/llama-65b-hf"
|
| 58 |
+
],
|
| 59 |
+
"Tokenizers": [
|
| 60 |
+
"LlamaTokenizerFast"
|
| 61 |
+
],
|
| 62 |
+
"Features": [
|
| 63 |
+
"AutoPipeline",
|
| 64 |
+
"Train a diffusion model",
|
| 65 |
+
"Load LoRAs for inference",
|
| 66 |
+
"Accelerate inference of text-to-image diffusion models",
|
| 67 |
+
"LOAD PIPELINES AND ADAPTERS",
|
| 68 |
+
"Load community pipelines and components",
|
| 69 |
+
"Load schedulers and models",
|
| 70 |
+
"Model files and layouts",
|
| 71 |
+
"Load adapters",
|
| 72 |
+
"Push files to the Hub",
|
| 73 |
+
"GENERATIVE TASKS",
|
| 74 |
+
"Unconditional image generation",
|
| 75 |
+
"Text-to-image",
|
| 76 |
+
"Image-to-image",
|
| 77 |
+
"Inpainting",
|
| 78 |
+
"Text or image-to-video",
|
| 79 |
+
"Depth-to-image",
|
| 80 |
+
"INFERENCE TECHNIQUES",
|
| 81 |
+
"Overview",
|
| 82 |
+
"Distributed inference with multiple GPUs",
|
| 83 |
+
"Merge LoRAs",
|
| 84 |
+
"Scheduler features",
|
| 85 |
+
"Pipeline callbacks",
|
| 86 |
+
"Reproducible pipelines",
|
| 87 |
+
"Controlling image quality",
|
| 88 |
+
"Prompt techniques",
|
| 89 |
+
"ADVANCED INFERENCE",
|
| 90 |
+
"Outpainting",
|
| 91 |
+
"SPECIFIC PIPELINE EXAMPLES",
|
| 92 |
+
"Stable Diffusion XL",
|
| 93 |
+
"SDXL Turbo",
|
| 94 |
+
"Kandinsky",
|
| 95 |
+
"IP-Adapter",
|
| 96 |
+
"ControlNet",
|
| 97 |
+
"T2I-Adapter",
|
| 98 |
+
"Latent Consistency Model",
|
| 99 |
+
"Textual inversion",
|
| 100 |
+
"Shap-E",
|
| 101 |
+
"DiffEdit",
|
| 102 |
+
"Trajectory Consistency Distillation-LoRA",
|
| 103 |
+
"Stable Video Diffusion",
|
| 104 |
+
"Marigold Computer Vision"
|
| 105 |
+
],
|
| 106 |
+
"Weights": [
|
| 107 |
+
"LoRA weights"
|
| 108 |
+
]
|
| 109 |
+
}
|
| 110 |
+
}
|
| 111 |
+
|
| 112 |
+
model_type = st.selectbox("Select a model type:", list(model_dict.keys()))
|
| 113 |
+
|
| 114 |
+
if model_type == "Stable Diffusion":
|
| 115 |
+
model = st.selectbox("Select a Stable Diffusion model:", model_dict[model_type]["Models"])
|
| 116 |
+
scheduler = st.selectbox("Select a scheduler:", model_dict[model_type]["Schedulers"])
|
| 117 |
+
feature = st.selectbox("Select a feature:", model_dict[model_type]["Features"])
|
| 118 |
+
adapter = st.selectbox("Select an adapter:", model_dict[model_type]["Adapters"])
|
| 119 |
+
weight = st.selectbox("Select a weight:", model_dict[model_type]["Weights"])
|
| 120 |
+
|
| 121 |
+
if st.button("Generate Images"):
|
| 122 |
+
st.write("Generating images...")
|
| 123 |
+
|
| 124 |
+
pipe = StableDiffusionPipeline.from_pretrained(model)
|
| 125 |
+
pipe.scheduler = eval(scheduler)()
|
| 126 |
+
|
| 127 |
+
if adapter == "ControlNet":
|
| 128 |
+
controlnet = ControlNetModel.from_pretrained("lllyasviel/control_v11e_sd15_openpose")
|
| 129 |
+
pipe = pipe.to_controlnet(controlnet)
|
| 130 |
+
|
| 131 |
+
# Define the prompt and number of images to generate
|
| 132 |
+
prompt = st.text_input("Enter a prompt:")
|
| 133 |
+
num_images = st.slider("Number of images to generate", min_value=1, max_value=10, value=1)
|
| 134 |
+
|
| 135 |
+
# Generate the images
|
| 136 |
+
images = pipe(prompt, num_images=num_images, guidance_scale=7.5).images
|
| 137 |
+
|
| 138 |
+
# Display the generated images
|
| 139 |
+
cols = st.columns(num_images)
|
| 140 |
+
for i, image in enumerate(images):
|
| 141 |
+
cols[i].image(image, caption=f"Image {i+1}", use_column_width=True)
|
| 142 |
+
|
| 143 |
+
elif model_type == "Llama":
|
| 144 |
+
# Llama model implementation goes here
|
| 145 |
+
|
| 146 |
+
# ...
|
| 147 |
+
|
| 148 |
+
# ...
|