Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
CHANGED
|
@@ -38,14 +38,21 @@ def find_available_models():
|
|
| 38 |
# 2. الدوال الأساسية (load_model, run_single_frame)
|
| 39 |
# ==============================================================================
|
| 40 |
def load_model(model_name: str):
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
if not model_name or "لم يتم" in model_name:
|
| 42 |
return None, "الرجاء اختيار نموذج صالح."
|
|
|
|
| 43 |
weights_path = os.path.join(WEIGHTS_DIR, f"{model_name}.pth")
|
| 44 |
print(f"Building model: '{model_name}'")
|
|
|
|
| 45 |
model_config = MODELS_SPECIFIC_CONFIGS.get(model_name, {})
|
| 46 |
model = build_interfuser_model(model_config)
|
|
|
|
| 47 |
if not os.path.exists(weights_path):
|
| 48 |
-
gr.Warning(f"ملف الأوزان '{weights_path}' غير موجود.")
|
| 49 |
else:
|
| 50 |
try:
|
| 51 |
state_dic = torch.load(weights_path, map_location=device, weights_only=True)
|
|
@@ -53,17 +60,47 @@ def load_model(model_name: str):
|
|
| 53 |
print(f"تم تحميل أوزان النموذج '{model_name}' بنجاح.")
|
| 54 |
except Exception as e:
|
| 55 |
gr.Warning(f"فشل تحميل الأوزان للنموذج '{model_name}': {e}.")
|
|
|
|
| 56 |
model.to(device)
|
| 57 |
model.eval()
|
|
|
|
| 58 |
return model, f"تم تحميل نموذج: {model_name}"
|
| 59 |
|
|
|
|
| 60 |
def run_single_frame(
|
| 61 |
-
model_from_state,
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
if model_from_state is None:
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
try:
|
|
|
|
| 67 |
if not (rgb_image_path and measurements_path):
|
| 68 |
raise gr.Error("الرجاء توفير الصورة الأمامية وملف القياسات على الأقل.")
|
| 69 |
|
|
@@ -101,10 +138,12 @@ def run_single_frame(
|
|
| 101 |
'measurements': measurements_tensor, 'target_point': target_point_tensor
|
| 102 |
}
|
| 103 |
|
|
|
|
| 104 |
with torch.no_grad():
|
| 105 |
-
outputs =
|
| 106 |
traffic, waypoints, is_junction, traffic_light, stop_sign, _ = outputs
|
| 107 |
|
|
|
|
| 108 |
speed, pos, theta = m_dict.get('speed',5.0), [m_dict.get('x',0.0), m_dict.get('y',0.0)], m_dict.get('theta',0.0)
|
| 109 |
traffic_np, waypoints_np = traffic[0].detach().cpu().numpy().reshape(20,20,-1), waypoints[0].detach().cpu().numpy() * WAYPOINT_SCALE_FACTOR
|
| 110 |
tracker, controller = Tracker(), InterfuserController(ControllerConfig())
|
|
@@ -127,6 +166,7 @@ def run_single_frame(
|
|
| 127 |
'object_counts': {'t0': counts_t0,'t1': counts_t1,'t2': counts_t2}}
|
| 128 |
dashboard_image = display.run_interface(interface_data)
|
| 129 |
|
|
|
|
| 130 |
result_dict = {"predicted_waypoints": waypoints_np.tolist(), "control_commands": {"steer": steer,"throttle": throttle,"brake": bool(brake)},
|
| 131 |
"perception": {"traffic_light_status": light_state,"stop_sign_detected": (stop_sign_state == "Yes"),"is_at_junction_prob": round(is_junction.sigmoid()[0,1].item(), 3)},
|
| 132 |
"metadata": {"speed_info": metadata[0],"perception_info": metadata[1],"stop_info": metadata[2],"safe_distance": metadata[3]}}
|
|
@@ -136,6 +176,7 @@ def run_single_frame(
|
|
| 136 |
print(traceback.format_exc())
|
| 137 |
raise gr.Error(f"حدث خطأ أثناء معالجة الإطار: {e}")
|
| 138 |
|
|
|
|
| 139 |
# ==============================================================================
|
| 140 |
# 4. تعريف واجهة Gradio المحسّنة (مع الإصلاح)
|
| 141 |
# ==============================================================================
|
|
|
|
| 38 |
# 2. الدوال الأساسية (load_model, run_single_frame)
|
| 39 |
# ==============================================================================
|
| 40 |
def load_model(model_name: str):
|
| 41 |
+
"""
|
| 42 |
+
(لا تغيير في هذه الدالة)
|
| 43 |
+
تبني وتحمل النموذج المختار وتُرجعه ككائن.
|
| 44 |
+
"""
|
| 45 |
if not model_name or "لم يتم" in model_name:
|
| 46 |
return None, "الرجاء اختيار نموذج صالح."
|
| 47 |
+
|
| 48 |
weights_path = os.path.join(WEIGHTS_DIR, f"{model_name}.pth")
|
| 49 |
print(f"Building model: '{model_name}'")
|
| 50 |
+
|
| 51 |
model_config = MODELS_SPECIFIC_CONFIGS.get(model_name, {})
|
| 52 |
model = build_interfuser_model(model_config)
|
| 53 |
+
|
| 54 |
if not os.path.exists(weights_path):
|
| 55 |
+
gr.Warning(f"ملف الأوزان '{weights_path}' غير موجود. النموذج سيعمل بأوزان عشوائية.")
|
| 56 |
else:
|
| 57 |
try:
|
| 58 |
state_dic = torch.load(weights_path, map_location=device, weights_only=True)
|
|
|
|
| 60 |
print(f"تم تحميل أوزان النموذج '{model_name}' بنجاح.")
|
| 61 |
except Exception as e:
|
| 62 |
gr.Warning(f"فشل تحميل الأوزان للنموذج '{model_name}': {e}.")
|
| 63 |
+
|
| 64 |
model.to(device)
|
| 65 |
model.eval()
|
| 66 |
+
|
| 67 |
return model, f"تم تحميل نموذج: {model_name}"
|
| 68 |
|
| 69 |
+
|
| 70 |
def run_single_frame(
|
| 71 |
+
model_from_state, # المدخل من gr.State
|
| 72 |
+
rgb_image_path,
|
| 73 |
+
rgb_left_image_path,
|
| 74 |
+
rgb_right_image_path,
|
| 75 |
+
rgb_center_image_path,
|
| 76 |
+
lidar_image_path,
|
| 77 |
+
measurements_path,
|
| 78 |
+
target_point_list
|
| 79 |
):
|
| 80 |
+
"""
|
| 81 |
+
(تم تعديل هذه الدالة)
|
| 82 |
+
تعالج إطارًا واحدًا، وتقوم بتحميل النموذج الافتراضي إذا لزم الأمر لجلسات الـ API.
|
| 83 |
+
"""
|
| 84 |
+
# --- تعديل للتعامل مع جلسات الـ API ---
|
| 85 |
+
# إذا كانت هذه جلسة API جديدة (model_state فارغ)، قم بتحميل النموذج الافتراضي
|
| 86 |
if model_from_state is None:
|
| 87 |
+
print("API session detected or model not loaded. Loading default model...")
|
| 88 |
+
available_models = find_available_models()
|
| 89 |
+
if not available_models:
|
| 90 |
+
raise gr.Error("لا توجد نماذج متاحة للتحميل في مجلد 'model/weights'.")
|
| 91 |
+
|
| 92 |
+
default_model_name = available_models[0]
|
| 93 |
+
model_to_use, _ = load_model(default_model_name)
|
| 94 |
+
else:
|
| 95 |
+
# إذا كان النموذج محملًا بالفعل (من جلسة متصفح)، استخدمه مباشرة
|
| 96 |
+
model_to_use = model_from_state
|
| 97 |
+
|
| 98 |
+
if model_to_use is None:
|
| 99 |
+
raise gr.Error("فشل تحميل النموذج. تحقق من السجلات (Logs) في Hugging Face Space.")
|
| 100 |
+
# --- نهاية التعديل ---
|
| 101 |
+
|
| 102 |
try:
|
| 103 |
+
# --- 1. قراءة ومعالجة المدخلات ---
|
| 104 |
if not (rgb_image_path and measurements_path):
|
| 105 |
raise gr.Error("الرجاء توفير الصورة الأمامية وملف القياسات على الأقل.")
|
| 106 |
|
|
|
|
| 138 |
'measurements': measurements_tensor, 'target_point': target_point_tensor
|
| 139 |
}
|
| 140 |
|
| 141 |
+
# --- 2. تشغيل النموذج ---
|
| 142 |
with torch.no_grad():
|
| 143 |
+
outputs = model_to_use(inputs) # <-- استخدام model_to_use
|
| 144 |
traffic, waypoints, is_junction, traffic_light, stop_sign, _ = outputs
|
| 145 |
|
| 146 |
+
# --- 3. المعالجة اللاحقة والتصوّر ---
|
| 147 |
speed, pos, theta = m_dict.get('speed',5.0), [m_dict.get('x',0.0), m_dict.get('y',0.0)], m_dict.get('theta',0.0)
|
| 148 |
traffic_np, waypoints_np = traffic[0].detach().cpu().numpy().reshape(20,20,-1), waypoints[0].detach().cpu().numpy() * WAYPOINT_SCALE_FACTOR
|
| 149 |
tracker, controller = Tracker(), InterfuserController(ControllerConfig())
|
|
|
|
| 166 |
'object_counts': {'t0': counts_t0,'t1': counts_t1,'t2': counts_t2}}
|
| 167 |
dashboard_image = display.run_interface(interface_data)
|
| 168 |
|
| 169 |
+
# --- 4. تجهيز المخرجات ---
|
| 170 |
result_dict = {"predicted_waypoints": waypoints_np.tolist(), "control_commands": {"steer": steer,"throttle": throttle,"brake": bool(brake)},
|
| 171 |
"perception": {"traffic_light_status": light_state,"stop_sign_detected": (stop_sign_state == "Yes"),"is_at_junction_prob": round(is_junction.sigmoid()[0,1].item(), 3)},
|
| 172 |
"metadata": {"speed_info": metadata[0],"perception_info": metadata[1],"stop_info": metadata[2],"safe_distance": metadata[3]}}
|
|
|
|
| 176 |
print(traceback.format_exc())
|
| 177 |
raise gr.Error(f"حدث خطأ أثناء معالجة الإطار: {e}")
|
| 178 |
|
| 179 |
+
|
| 180 |
# ==============================================================================
|
| 181 |
# 4. تعريف واجهة Gradio المحسّنة (مع الإصلاح)
|
| 182 |
# ==============================================================================
|