FahadAlam's picture
Update app.py
b58fdfd
raw
history blame
1.19 kB
import gradio as gr
import pandas as pd
from sklearn import datasets
import seaborn as sns
import matplotlib.pyplot as plt
def findCorrelation(dataset, target):
print(dataset.name)
print("\n")
print(target)
print(type(target))
print(str(target))
print("\n")
df = pd.read_csv(dataset.name)
print(df)
print("\n")
d = df.corr()["coma"].to_dict()
print(d)
labels = sorted(d.items(), key=lambda x: x[1], reverse=True)
del labels[target]
fig1 = plt.figure()
hm = sns.heatmap(df.corr(), annot = True)
hm.set(title = "Correlation matrix of dataset\n")
fig2 = plt.figure()
# use the function regplot to make a scatterplot
sns.regplot(x=labels.keys()[0], y=df[target])
fig3 = plt.figure()
# use the function regplot to make a scatterplot
sns.regplot(x=labels.keys()[1], y=df[target])
fig4 = plt.figure()
# use the function regplot to make a scatterplot
sns.regplot(x=labels.keys()[2], y=df[target])
return labels, fig1, fig2, fig3, fig4
demo = gr.Interface(fn=findCorrelation, inputs=[gr.File(), 'text'], outputs=[gr.Label(), gr.Plot(), gr.Plot(), gr.Plot(), gr.Plot()], title="Find correlation")
demo.launch(debug=True)