Spaces:
Runtime error
Runtime error
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import gradio as gr | |
# Load the model and tokenizer | |
model_name = "silma-ai/SILMA-9B-Instruct-v1.0" | |
model_name = "rombodawg/Rombos-LLM-V2.5-Qwen-72b" | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
model = AutoModelForCausalLM.from_pretrained(model_name) | |
def generate_response(prompt): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
outputs = model.generate(**inputs, max_length=200, num_return_sequences=1) | |
return tokenizer.decode(outputs[0], skip_special_tokens=True) | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=generate_response, | |
inputs="text", | |
outputs="text", | |
title="SILMA-9B Instruct", | |
description="Provide a prompt, and the model generates a response." | |
) | |
interface.launch() | |