Spaces:
Runtime error
Runtime error
Fabrice-TIERCELIN
commited on
Add working files
Browse files- README.md +7 -12
- app.py +110 -273
- briarmbg.py +455 -0
- foo.py +2 -0
- input.jpg +0 -0
- requirements.txt +9 -26
README.md
CHANGED
@@ -1,18 +1,13 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
-
tags:
|
7 |
-
- sound generation
|
8 |
-
- language models
|
9 |
-
- LLMs
|
10 |
sdk: gradio
|
11 |
-
sdk_version: 4.
|
12 |
app_file: app.py
|
13 |
pinned: false
|
14 |
-
license:
|
15 |
-
short_description: Sound effect from description
|
16 |
---
|
17 |
|
18 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: BRIA RMBG 1.4
|
3 |
+
emoji: 💻
|
4 |
+
colorFrom: red
|
5 |
+
colorTo: red
|
|
|
|
|
|
|
|
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.16.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: other
|
|
|
11 |
---
|
12 |
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
CHANGED
@@ -1,278 +1,115 @@
|
|
1 |
-
import
|
2 |
-
import json
|
3 |
import torch
|
4 |
-
import
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
from pydub import AudioSegment
|
19 |
-
|
20 |
-
max_64_bit_int = 2**63 - 1
|
21 |
-
|
22 |
-
# Automatic device detection
|
23 |
if torch.cuda.is_available():
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
26 |
else:
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
class Tango:
|
31 |
-
def __init__(self, name = "declare-lab/tango2", device = device_selection):
|
32 |
-
|
33 |
-
path = snapshot_download(repo_id = name)
|
34 |
-
|
35 |
-
vae_config = json.load(open("{}/vae_config.json".format(path)))
|
36 |
-
stft_config = json.load(open("{}/stft_config.json".format(path)))
|
37 |
-
main_config = json.load(open("{}/main_config.json".format(path)))
|
38 |
-
|
39 |
-
self.vae = AutoencoderKL(**vae_config).to(device)
|
40 |
-
self.stft = TacotronSTFT(**stft_config).to(device)
|
41 |
-
self.model = AudioDiffusion(**main_config).to(device)
|
42 |
-
|
43 |
-
vae_weights = torch.load("{}/pytorch_model_vae.bin".format(path), map_location = device)
|
44 |
-
stft_weights = torch.load("{}/pytorch_model_stft.bin".format(path), map_location = device)
|
45 |
-
main_weights = torch.load("{}/pytorch_model_main.bin".format(path), map_location = device)
|
46 |
-
|
47 |
-
self.vae.load_state_dict(vae_weights)
|
48 |
-
self.stft.load_state_dict(stft_weights)
|
49 |
-
self.model.load_state_dict(main_weights)
|
50 |
|
51 |
-
print ("Successfully loaded checkpoint from:", name)
|
52 |
-
|
53 |
-
self.vae.eval()
|
54 |
-
self.stft.eval()
|
55 |
-
self.model.eval()
|
56 |
-
|
57 |
-
self.scheduler = DDPMScheduler.from_pretrained(main_config["scheduler_name"], subfolder = "scheduler")
|
58 |
-
|
59 |
-
def chunks(self, lst, n):
|
60 |
-
# Yield successive n-sized chunks from a list
|
61 |
-
for i in range(0, len(lst), n):
|
62 |
-
yield lst[i:i + n]
|
63 |
-
|
64 |
-
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
|
65 |
-
# Generate audio for a single prompt string
|
66 |
-
with torch.no_grad():
|
67 |
-
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
|
68 |
-
mel = self.vae.decode_first_stage(latents)
|
69 |
-
wave = self.vae.decode_to_waveform(mel)
|
70 |
-
return wave
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
)
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
# Gradio interface
|
158 |
-
with gr.Blocks() as interface:
|
159 |
-
gr.Markdown("""
|
160 |
-
<p style="text-align: center;">
|
161 |
-
<b><big><big><big>Text-to-Audio</big></big></big></b>
|
162 |
-
<br/>Generates 10 seconds of sound effects from description, freely, without account, without watermark
|
163 |
-
</p>
|
164 |
-
<br/>
|
165 |
-
<br/>
|
166 |
-
✨ Powered by <i>Tango 2</i> AI.
|
167 |
-
<br/>
|
168 |
-
<ul>
|
169 |
-
<li>If you need <b>47 seconds</b> of audio, I recommend to use <i>Stable Audio</i>,</li>
|
170 |
-
<li>If you need to generate <b>music</b>, I recommend to use <i>MusicGen</i>,</li>
|
171 |
-
</ul>
|
172 |
-
<br/>
|
173 |
-
""" + ("🏃♀️ Estimated time: few minutes. Current device: GPU." if torch.cuda.is_available() else "🐌 Slow process... ~5 min. Current device: CPU.") + """
|
174 |
-
Your computer must <b><u>not</u></b> enter into standby mode.<br/>You can duplicate this space on a free account, it's designed to work on CPU, GPU and ZeroGPU.<br/>
|
175 |
-
<a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Text-to-Audio?duplicate=true&hidden=public&hidden=public'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a>
|
176 |
-
<br/>
|
177 |
-
⚖️ You can use, modify and share the generated sounds but not for commercial uses.
|
178 |
-
"""
|
179 |
-
)
|
180 |
-
input_text = gr.Textbox(label = "Prompt", value = "Snort of a horse", lines = 2, autofocus = True)
|
181 |
-
with gr.Accordion("Advanced options", open = False):
|
182 |
-
output_format = gr.Radio(label = "Output format", info = "The file you can dowload", choices = ["mp3", "wav"], value = "wav")
|
183 |
-
output_number = gr.Slider(label = "Number of generations", info = "1, 2 or 3 output files", minimum = 1, maximum = 3, value = 1, step = 1, interactive = True)
|
184 |
-
denoising_steps = gr.Slider(label = "Steps", info = "lower=faster & variant, higher=audio quality & similar", minimum = 10, maximum = 200, value = 10, step = 1, interactive = True)
|
185 |
-
guidance_scale = gr.Slider(label = "Guidance Scale", info = "lower=audio quality, higher=follow the prompt", minimum = 1, maximum = 10, value = 3, step = 0.1, interactive = True)
|
186 |
-
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed", value = True, info = "If checked, result is always different")
|
187 |
-
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed")
|
188 |
-
|
189 |
-
submit = gr.Button("🚀 Generate", variant = "primary")
|
190 |
-
|
191 |
-
output_audio_1 = gr.Audio(label = "Generated Audio #1/3", format = "wav", type="numpy", autoplay = True)
|
192 |
-
output_audio_2 = gr.Audio(label = "Generated Audio #2/3", format = "wav", type="numpy")
|
193 |
-
output_audio_3 = gr.Audio(label = "Generated Audio #3/3", format = "wav", type="numpy")
|
194 |
-
information = gr.Label(label = "Information")
|
195 |
-
|
196 |
-
submit.click(fn = update_seed, inputs = [
|
197 |
-
randomize_seed,
|
198 |
-
seed
|
199 |
-
], outputs = [
|
200 |
-
seed
|
201 |
-
], queue = False, show_progress = False).then(fn = check, inputs = [
|
202 |
-
input_text,
|
203 |
-
output_number,
|
204 |
-
denoising_steps,
|
205 |
-
guidance_scale,
|
206 |
-
randomize_seed,
|
207 |
-
seed
|
208 |
-
], outputs = [], queue = False, show_progress = False).success(fn = update_output, inputs = [
|
209 |
-
output_format,
|
210 |
-
output_number
|
211 |
-
], outputs = [
|
212 |
-
output_audio_1,
|
213 |
-
output_audio_2,
|
214 |
-
output_audio_3,
|
215 |
-
information
|
216 |
-
], queue = False, show_progress = False).success(fn = text2audio, inputs = [
|
217 |
-
input_text,
|
218 |
-
output_number,
|
219 |
-
denoising_steps,
|
220 |
-
guidance_scale,
|
221 |
-
randomize_seed,
|
222 |
-
seed
|
223 |
-
], outputs = [
|
224 |
-
output_audio_1,
|
225 |
-
output_audio_2,
|
226 |
-
output_audio_3,
|
227 |
-
information
|
228 |
-
], scroll_to_output = True)
|
229 |
-
|
230 |
-
gr.Examples(
|
231 |
-
fn = text2audio,
|
232 |
-
inputs = [
|
233 |
-
input_text,
|
234 |
-
output_number,
|
235 |
-
denoising_steps,
|
236 |
-
guidance_scale,
|
237 |
-
randomize_seed,
|
238 |
-
seed
|
239 |
-
],
|
240 |
-
outputs = [
|
241 |
-
output_audio_1,
|
242 |
-
output_audio_2,
|
243 |
-
output_audio_3,
|
244 |
-
information
|
245 |
-
],
|
246 |
-
examples = [
|
247 |
-
["A hammer is hitting a wooden surface", 3, 100, 3, False, 123],
|
248 |
-
["Peaceful and calming ambient music with singing bowl and other instruments.", 3, 100, 3, False, 123],
|
249 |
-
["A man is speaking in a small room.", 2, 100, 3, False, 123],
|
250 |
-
["A female is speaking followed by footstep sound", 1, 100, 3, False, 123],
|
251 |
-
["Wooden table tapping sound followed by water pouring sound.", 3, 200, 3, False, 123],
|
252 |
-
],
|
253 |
-
cache_examples = "lazy" if is_space_imported else False,
|
254 |
-
)
|
255 |
-
|
256 |
-
gr.Markdown(
|
257 |
-
"""
|
258 |
-
## How to prompt your sound
|
259 |
-
You can use round brackets to increase the importance of a part:
|
260 |
-
```
|
261 |
-
Peaceful and (calming) ambient music with singing bowl and other instruments
|
262 |
-
```
|
263 |
-
You can use several levels of round brackets to even more increase the importance of a part:
|
264 |
-
```
|
265 |
-
(Peaceful) and ((calming)) ambient music with singing bowl and other instruments
|
266 |
-
```
|
267 |
-
You can use number instead of several round brackets:
|
268 |
-
```
|
269 |
-
(Peaceful:1.5) and ((calming)) ambient music with singing bowl and other instruments
|
270 |
-
```
|
271 |
-
You can do the same thing with square brackets to decrease the importance of a part:
|
272 |
-
```
|
273 |
-
(Peaceful:1.5) and ((calming)) ambient music with [singing:2] bowl and other instruments
|
274 |
-
"""
|
275 |
-
)
|
276 |
-
|
277 |
-
if __name__ == "__main__":
|
278 |
-
interface.launch(share = False)
|
|
|
1 |
+
import numpy as np
|
|
|
2 |
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torchvision.transforms.functional import normalize
|
5 |
+
from huggingface_hub import hf_hub_download
|
6 |
+
import gradio as gr
|
7 |
+
from gradio_imageslider import ImageSlider
|
8 |
+
from briarmbg import BriaRMBG
|
9 |
+
import PIL
|
10 |
+
from PIL import Image
|
11 |
+
from typing import Tuple
|
12 |
+
|
13 |
+
net=BriaRMBG()
|
14 |
+
# model_path = "./model1.pth"
|
15 |
+
#model_path = hf_hub_download("briaai/RMBG-1.4", 'model.pth')
|
16 |
+
model_path = hf_hub_download("cocktailpeanut/gbmr", 'model.pth')
|
|
|
|
|
|
|
|
|
|
|
17 |
if torch.cuda.is_available():
|
18 |
+
net.load_state_dict(torch.load(model_path))
|
19 |
+
net=net.cuda()
|
20 |
+
device = "cuda"
|
21 |
+
elif torch.backends.mps.is_available():
|
22 |
+
net.load_state_dict(torch.load(model_path,map_location="mps"))
|
23 |
+
net=net.to("mps")
|
24 |
+
device = "mps"
|
25 |
else:
|
26 |
+
net.load_state_dict(torch.load(model_path,map_location="cpu"))
|
27 |
+
device = "cpu"
|
28 |
+
net.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
def resize_image(image):
|
32 |
+
image = image.convert('RGB')
|
33 |
+
model_input_size = (1024, 1024)
|
34 |
+
image = image.resize(model_input_size, Image.BILINEAR)
|
35 |
+
return image
|
36 |
+
|
37 |
+
|
38 |
+
def process(image):
|
39 |
+
|
40 |
+
# prepare input
|
41 |
+
orig_image = Image.fromarray(image)
|
42 |
+
w,h = orig_im_size = orig_image.size
|
43 |
+
image = resize_image(orig_image)
|
44 |
+
im_np = np.array(image)
|
45 |
+
im_tensor = torch.tensor(im_np, dtype=torch.float32).permute(2,0,1)
|
46 |
+
im_tensor = torch.unsqueeze(im_tensor,0)
|
47 |
+
im_tensor = torch.divide(im_tensor,255.0)
|
48 |
+
im_tensor = normalize(im_tensor,[0.5,0.5,0.5],[1.0,1.0,1.0])
|
49 |
+
if device == "cuda":
|
50 |
+
im_tensor=im_tensor.cuda()
|
51 |
+
elif device == "mps":
|
52 |
+
im_tensor=im_tensor.to("mps")
|
53 |
+
|
54 |
+
#inference
|
55 |
+
result=net(im_tensor)
|
56 |
+
# post process
|
57 |
+
result = torch.squeeze(F.interpolate(result[0][0], size=(h,w), mode='bilinear') ,0)
|
58 |
+
ma = torch.max(result)
|
59 |
+
mi = torch.min(result)
|
60 |
+
result = (result-mi)/(ma-mi)
|
61 |
+
# image to pil
|
62 |
+
im_array = (result*255).cpu().data.numpy().astype(np.uint8)
|
63 |
+
pil_im = Image.fromarray(np.squeeze(im_array))
|
64 |
+
# paste the mask on the original image
|
65 |
+
new_im = Image.new("RGBA", pil_im.size, (0,0,0,0))
|
66 |
+
new_im.paste(orig_image, mask=pil_im)
|
67 |
+
# new_orig_image = orig_image.convert('RGBA')
|
68 |
+
|
69 |
+
return new_im
|
70 |
+
# return [new_orig_image, new_im]
|
71 |
+
|
72 |
+
|
73 |
+
# block = gr.Blocks().queue()
|
74 |
+
|
75 |
+
# with block:
|
76 |
+
# gr.Markdown("## BRIA RMBG 1.4")
|
77 |
+
# gr.HTML('''
|
78 |
+
# <p style="margin-bottom: 10px; font-size: 94%">
|
79 |
+
# This is a demo for BRIA RMBG 1.4 that using
|
80 |
+
# <a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
|
81 |
+
# </p>
|
82 |
+
# ''')
|
83 |
+
# with gr.Row():
|
84 |
+
# with gr.Column():
|
85 |
+
# input_image = gr.Image(sources=None, type="pil") # None for upload, ctrl+v and webcam
|
86 |
+
# # input_image = gr.Image(sources=None, type="numpy") # None for upload, ctrl+v and webcam
|
87 |
+
# run_button = gr.Button(value="Run")
|
88 |
+
|
89 |
+
# with gr.Column():
|
90 |
+
# result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", columns=[1], height='auto')
|
91 |
+
# ips = [input_image]
|
92 |
+
# run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
93 |
+
|
94 |
+
# block.launch(debug = True)
|
95 |
+
|
96 |
+
# block = gr.Blocks().queue()
|
97 |
+
|
98 |
+
gr.Markdown("## BRIA RMBG 1.4")
|
99 |
+
gr.HTML('''
|
100 |
+
<p style="margin-bottom: 10px; font-size: 94%">
|
101 |
+
This is a demo for BRIA RMBG 1.4 that using
|
102 |
+
<a href="https://huggingface.co/briaai/RMBG-1.4" target="_blank">BRIA RMBG-1.4 image matting model</a> as backbone.
|
103 |
+
</p>
|
104 |
+
''')
|
105 |
+
title = "Background Removal"
|
106 |
+
description = r"""Background removal model developed by <a href='https://BRIA.AI' target='_blank'><b>BRIA.AI</b></a>, trained on a carefully selected dataset and is available as an open-source model for non-commercial use.<br>
|
107 |
+
For test upload your image and wait. Read more at model card <a href='https://huggingface.co/briaai/RMBG-1.4' target='_blank'><b>briaai/RMBG-1.4</b></a>.<br>
|
108 |
+
"""
|
109 |
+
examples = [['./input.jpg'],]
|
110 |
+
# output = ImageSlider(position=0.5,label='Image without background', type="pil", show_download_button=True)
|
111 |
+
# demo = gr.Interface(fn=process,inputs="image", outputs=output, examples=examples, title=title, description=description)
|
112 |
+
demo = gr.Interface(fn=process,inputs="image", outputs="image", examples=examples, title=title, description=description)
|
113 |
+
|
114 |
+
if __name__ == "__main__":
|
115 |
+
demo.launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
briarmbg.py
ADDED
@@ -0,0 +1,455 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
class REBNCONV(nn.Module):
|
6 |
+
def __init__(self,in_ch=3,out_ch=3,dirate=1,stride=1):
|
7 |
+
super(REBNCONV,self).__init__()
|
8 |
+
|
9 |
+
self.conv_s1 = nn.Conv2d(in_ch,out_ch,3,padding=1*dirate,dilation=1*dirate,stride=stride)
|
10 |
+
self.bn_s1 = nn.BatchNorm2d(out_ch)
|
11 |
+
self.relu_s1 = nn.ReLU(inplace=True)
|
12 |
+
|
13 |
+
def forward(self,x):
|
14 |
+
|
15 |
+
hx = x
|
16 |
+
xout = self.relu_s1(self.bn_s1(self.conv_s1(hx)))
|
17 |
+
|
18 |
+
return xout
|
19 |
+
|
20 |
+
## upsample tensor 'src' to have the same spatial size with tensor 'tar'
|
21 |
+
def _upsample_like(src,tar):
|
22 |
+
|
23 |
+
src = F.interpolate(src,size=tar.shape[2:],mode='bilinear')
|
24 |
+
|
25 |
+
return src
|
26 |
+
|
27 |
+
|
28 |
+
### RSU-7 ###
|
29 |
+
class RSU7(nn.Module):
|
30 |
+
|
31 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3, img_size=512):
|
32 |
+
super(RSU7,self).__init__()
|
33 |
+
|
34 |
+
self.in_ch = in_ch
|
35 |
+
self.mid_ch = mid_ch
|
36 |
+
self.out_ch = out_ch
|
37 |
+
|
38 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1) ## 1 -> 1/2
|
39 |
+
|
40 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
41 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
42 |
+
|
43 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
44 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
45 |
+
|
46 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
47 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
48 |
+
|
49 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
50 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
51 |
+
|
52 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
53 |
+
self.pool5 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
54 |
+
|
55 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
56 |
+
|
57 |
+
self.rebnconv7 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
58 |
+
|
59 |
+
self.rebnconv6d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
60 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
61 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
62 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
63 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
64 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
65 |
+
|
66 |
+
def forward(self,x):
|
67 |
+
b, c, h, w = x.shape
|
68 |
+
|
69 |
+
hx = x
|
70 |
+
hxin = self.rebnconvin(hx)
|
71 |
+
|
72 |
+
hx1 = self.rebnconv1(hxin)
|
73 |
+
hx = self.pool1(hx1)
|
74 |
+
|
75 |
+
hx2 = self.rebnconv2(hx)
|
76 |
+
hx = self.pool2(hx2)
|
77 |
+
|
78 |
+
hx3 = self.rebnconv3(hx)
|
79 |
+
hx = self.pool3(hx3)
|
80 |
+
|
81 |
+
hx4 = self.rebnconv4(hx)
|
82 |
+
hx = self.pool4(hx4)
|
83 |
+
|
84 |
+
hx5 = self.rebnconv5(hx)
|
85 |
+
hx = self.pool5(hx5)
|
86 |
+
|
87 |
+
hx6 = self.rebnconv6(hx)
|
88 |
+
|
89 |
+
hx7 = self.rebnconv7(hx6)
|
90 |
+
|
91 |
+
hx6d = self.rebnconv6d(torch.cat((hx7,hx6),1))
|
92 |
+
hx6dup = _upsample_like(hx6d,hx5)
|
93 |
+
|
94 |
+
hx5d = self.rebnconv5d(torch.cat((hx6dup,hx5),1))
|
95 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
96 |
+
|
97 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
98 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
99 |
+
|
100 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
101 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
102 |
+
|
103 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
104 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
105 |
+
|
106 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
107 |
+
|
108 |
+
return hx1d + hxin
|
109 |
+
|
110 |
+
|
111 |
+
### RSU-6 ###
|
112 |
+
class RSU6(nn.Module):
|
113 |
+
|
114 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
115 |
+
super(RSU6,self).__init__()
|
116 |
+
|
117 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
118 |
+
|
119 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
120 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
121 |
+
|
122 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
123 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
124 |
+
|
125 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
126 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
127 |
+
|
128 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
129 |
+
self.pool4 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
130 |
+
|
131 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
132 |
+
|
133 |
+
self.rebnconv6 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
134 |
+
|
135 |
+
self.rebnconv5d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
136 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
137 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
138 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
139 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
140 |
+
|
141 |
+
def forward(self,x):
|
142 |
+
|
143 |
+
hx = x
|
144 |
+
|
145 |
+
hxin = self.rebnconvin(hx)
|
146 |
+
|
147 |
+
hx1 = self.rebnconv1(hxin)
|
148 |
+
hx = self.pool1(hx1)
|
149 |
+
|
150 |
+
hx2 = self.rebnconv2(hx)
|
151 |
+
hx = self.pool2(hx2)
|
152 |
+
|
153 |
+
hx3 = self.rebnconv3(hx)
|
154 |
+
hx = self.pool3(hx3)
|
155 |
+
|
156 |
+
hx4 = self.rebnconv4(hx)
|
157 |
+
hx = self.pool4(hx4)
|
158 |
+
|
159 |
+
hx5 = self.rebnconv5(hx)
|
160 |
+
|
161 |
+
hx6 = self.rebnconv6(hx5)
|
162 |
+
|
163 |
+
|
164 |
+
hx5d = self.rebnconv5d(torch.cat((hx6,hx5),1))
|
165 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
166 |
+
|
167 |
+
hx4d = self.rebnconv4d(torch.cat((hx5dup,hx4),1))
|
168 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
169 |
+
|
170 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
171 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
172 |
+
|
173 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
174 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
175 |
+
|
176 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
177 |
+
|
178 |
+
return hx1d + hxin
|
179 |
+
|
180 |
+
### RSU-5 ###
|
181 |
+
class RSU5(nn.Module):
|
182 |
+
|
183 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
184 |
+
super(RSU5,self).__init__()
|
185 |
+
|
186 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
187 |
+
|
188 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
189 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
190 |
+
|
191 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
192 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
193 |
+
|
194 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
195 |
+
self.pool3 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
196 |
+
|
197 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
198 |
+
|
199 |
+
self.rebnconv5 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
200 |
+
|
201 |
+
self.rebnconv4d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
202 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
203 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
204 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
205 |
+
|
206 |
+
def forward(self,x):
|
207 |
+
|
208 |
+
hx = x
|
209 |
+
|
210 |
+
hxin = self.rebnconvin(hx)
|
211 |
+
|
212 |
+
hx1 = self.rebnconv1(hxin)
|
213 |
+
hx = self.pool1(hx1)
|
214 |
+
|
215 |
+
hx2 = self.rebnconv2(hx)
|
216 |
+
hx = self.pool2(hx2)
|
217 |
+
|
218 |
+
hx3 = self.rebnconv3(hx)
|
219 |
+
hx = self.pool3(hx3)
|
220 |
+
|
221 |
+
hx4 = self.rebnconv4(hx)
|
222 |
+
|
223 |
+
hx5 = self.rebnconv5(hx4)
|
224 |
+
|
225 |
+
hx4d = self.rebnconv4d(torch.cat((hx5,hx4),1))
|
226 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
227 |
+
|
228 |
+
hx3d = self.rebnconv3d(torch.cat((hx4dup,hx3),1))
|
229 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
230 |
+
|
231 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
232 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
233 |
+
|
234 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
235 |
+
|
236 |
+
return hx1d + hxin
|
237 |
+
|
238 |
+
### RSU-4 ###
|
239 |
+
class RSU4(nn.Module):
|
240 |
+
|
241 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
242 |
+
super(RSU4,self).__init__()
|
243 |
+
|
244 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
245 |
+
|
246 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
247 |
+
self.pool1 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
248 |
+
|
249 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
250 |
+
self.pool2 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
251 |
+
|
252 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=1)
|
253 |
+
|
254 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
255 |
+
|
256 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
257 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=1)
|
258 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
259 |
+
|
260 |
+
def forward(self,x):
|
261 |
+
|
262 |
+
hx = x
|
263 |
+
|
264 |
+
hxin = self.rebnconvin(hx)
|
265 |
+
|
266 |
+
hx1 = self.rebnconv1(hxin)
|
267 |
+
hx = self.pool1(hx1)
|
268 |
+
|
269 |
+
hx2 = self.rebnconv2(hx)
|
270 |
+
hx = self.pool2(hx2)
|
271 |
+
|
272 |
+
hx3 = self.rebnconv3(hx)
|
273 |
+
|
274 |
+
hx4 = self.rebnconv4(hx3)
|
275 |
+
|
276 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
277 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
278 |
+
|
279 |
+
hx2d = self.rebnconv2d(torch.cat((hx3dup,hx2),1))
|
280 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
281 |
+
|
282 |
+
hx1d = self.rebnconv1d(torch.cat((hx2dup,hx1),1))
|
283 |
+
|
284 |
+
return hx1d + hxin
|
285 |
+
|
286 |
+
### RSU-4F ###
|
287 |
+
class RSU4F(nn.Module):
|
288 |
+
|
289 |
+
def __init__(self, in_ch=3, mid_ch=12, out_ch=3):
|
290 |
+
super(RSU4F,self).__init__()
|
291 |
+
|
292 |
+
self.rebnconvin = REBNCONV(in_ch,out_ch,dirate=1)
|
293 |
+
|
294 |
+
self.rebnconv1 = REBNCONV(out_ch,mid_ch,dirate=1)
|
295 |
+
self.rebnconv2 = REBNCONV(mid_ch,mid_ch,dirate=2)
|
296 |
+
self.rebnconv3 = REBNCONV(mid_ch,mid_ch,dirate=4)
|
297 |
+
|
298 |
+
self.rebnconv4 = REBNCONV(mid_ch,mid_ch,dirate=8)
|
299 |
+
|
300 |
+
self.rebnconv3d = REBNCONV(mid_ch*2,mid_ch,dirate=4)
|
301 |
+
self.rebnconv2d = REBNCONV(mid_ch*2,mid_ch,dirate=2)
|
302 |
+
self.rebnconv1d = REBNCONV(mid_ch*2,out_ch,dirate=1)
|
303 |
+
|
304 |
+
def forward(self,x):
|
305 |
+
|
306 |
+
hx = x
|
307 |
+
|
308 |
+
hxin = self.rebnconvin(hx)
|
309 |
+
|
310 |
+
hx1 = self.rebnconv1(hxin)
|
311 |
+
hx2 = self.rebnconv2(hx1)
|
312 |
+
hx3 = self.rebnconv3(hx2)
|
313 |
+
|
314 |
+
hx4 = self.rebnconv4(hx3)
|
315 |
+
|
316 |
+
hx3d = self.rebnconv3d(torch.cat((hx4,hx3),1))
|
317 |
+
hx2d = self.rebnconv2d(torch.cat((hx3d,hx2),1))
|
318 |
+
hx1d = self.rebnconv1d(torch.cat((hx2d,hx1),1))
|
319 |
+
|
320 |
+
return hx1d + hxin
|
321 |
+
|
322 |
+
|
323 |
+
class myrebnconv(nn.Module):
|
324 |
+
def __init__(self, in_ch=3,
|
325 |
+
out_ch=1,
|
326 |
+
kernel_size=3,
|
327 |
+
stride=1,
|
328 |
+
padding=1,
|
329 |
+
dilation=1,
|
330 |
+
groups=1):
|
331 |
+
super(myrebnconv,self).__init__()
|
332 |
+
|
333 |
+
self.conv = nn.Conv2d(in_ch,
|
334 |
+
out_ch,
|
335 |
+
kernel_size=kernel_size,
|
336 |
+
stride=stride,
|
337 |
+
padding=padding,
|
338 |
+
dilation=dilation,
|
339 |
+
groups=groups)
|
340 |
+
self.bn = nn.BatchNorm2d(out_ch)
|
341 |
+
self.rl = nn.ReLU(inplace=True)
|
342 |
+
|
343 |
+
def forward(self,x):
|
344 |
+
return self.rl(self.bn(self.conv(x)))
|
345 |
+
|
346 |
+
|
347 |
+
class BriaRMBG(nn.Module):
|
348 |
+
|
349 |
+
def __init__(self,in_ch=3,out_ch=1):
|
350 |
+
super(BriaRMBG,self).__init__()
|
351 |
+
|
352 |
+
self.conv_in = nn.Conv2d(in_ch,64,3,stride=2,padding=1)
|
353 |
+
self.pool_in = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
354 |
+
|
355 |
+
self.stage1 = RSU7(64,32,64)
|
356 |
+
self.pool12 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
357 |
+
|
358 |
+
self.stage2 = RSU6(64,32,128)
|
359 |
+
self.pool23 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
360 |
+
|
361 |
+
self.stage3 = RSU5(128,64,256)
|
362 |
+
self.pool34 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
363 |
+
|
364 |
+
self.stage4 = RSU4(256,128,512)
|
365 |
+
self.pool45 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
366 |
+
|
367 |
+
self.stage5 = RSU4F(512,256,512)
|
368 |
+
self.pool56 = nn.MaxPool2d(2,stride=2,ceil_mode=True)
|
369 |
+
|
370 |
+
self.stage6 = RSU4F(512,256,512)
|
371 |
+
|
372 |
+
# decoder
|
373 |
+
self.stage5d = RSU4F(1024,256,512)
|
374 |
+
self.stage4d = RSU4(1024,128,256)
|
375 |
+
self.stage3d = RSU5(512,64,128)
|
376 |
+
self.stage2d = RSU6(256,32,64)
|
377 |
+
self.stage1d = RSU7(128,16,64)
|
378 |
+
|
379 |
+
self.side1 = nn.Conv2d(64,out_ch,3,padding=1)
|
380 |
+
self.side2 = nn.Conv2d(64,out_ch,3,padding=1)
|
381 |
+
self.side3 = nn.Conv2d(128,out_ch,3,padding=1)
|
382 |
+
self.side4 = nn.Conv2d(256,out_ch,3,padding=1)
|
383 |
+
self.side5 = nn.Conv2d(512,out_ch,3,padding=1)
|
384 |
+
self.side6 = nn.Conv2d(512,out_ch,3,padding=1)
|
385 |
+
|
386 |
+
# self.outconv = nn.Conv2d(6*out_ch,out_ch,1)
|
387 |
+
|
388 |
+
def forward(self,x):
|
389 |
+
|
390 |
+
hx = x
|
391 |
+
|
392 |
+
hxin = self.conv_in(hx)
|
393 |
+
#hx = self.pool_in(hxin)
|
394 |
+
|
395 |
+
#stage 1
|
396 |
+
hx1 = self.stage1(hxin)
|
397 |
+
hx = self.pool12(hx1)
|
398 |
+
|
399 |
+
#stage 2
|
400 |
+
hx2 = self.stage2(hx)
|
401 |
+
hx = self.pool23(hx2)
|
402 |
+
|
403 |
+
#stage 3
|
404 |
+
hx3 = self.stage3(hx)
|
405 |
+
hx = self.pool34(hx3)
|
406 |
+
|
407 |
+
#stage 4
|
408 |
+
hx4 = self.stage4(hx)
|
409 |
+
hx = self.pool45(hx4)
|
410 |
+
|
411 |
+
#stage 5
|
412 |
+
hx5 = self.stage5(hx)
|
413 |
+
hx = self.pool56(hx5)
|
414 |
+
|
415 |
+
#stage 6
|
416 |
+
hx6 = self.stage6(hx)
|
417 |
+
hx6up = _upsample_like(hx6,hx5)
|
418 |
+
|
419 |
+
#-------------------- decoder --------------------
|
420 |
+
hx5d = self.stage5d(torch.cat((hx6up,hx5),1))
|
421 |
+
hx5dup = _upsample_like(hx5d,hx4)
|
422 |
+
|
423 |
+
hx4d = self.stage4d(torch.cat((hx5dup,hx4),1))
|
424 |
+
hx4dup = _upsample_like(hx4d,hx3)
|
425 |
+
|
426 |
+
hx3d = self.stage3d(torch.cat((hx4dup,hx3),1))
|
427 |
+
hx3dup = _upsample_like(hx3d,hx2)
|
428 |
+
|
429 |
+
hx2d = self.stage2d(torch.cat((hx3dup,hx2),1))
|
430 |
+
hx2dup = _upsample_like(hx2d,hx1)
|
431 |
+
|
432 |
+
hx1d = self.stage1d(torch.cat((hx2dup,hx1),1))
|
433 |
+
|
434 |
+
|
435 |
+
#side output
|
436 |
+
d1 = self.side1(hx1d)
|
437 |
+
d1 = _upsample_like(d1,x)
|
438 |
+
|
439 |
+
d2 = self.side2(hx2d)
|
440 |
+
d2 = _upsample_like(d2,x)
|
441 |
+
|
442 |
+
d3 = self.side3(hx3d)
|
443 |
+
d3 = _upsample_like(d3,x)
|
444 |
+
|
445 |
+
d4 = self.side4(hx4d)
|
446 |
+
d4 = _upsample_like(d4,x)
|
447 |
+
|
448 |
+
d5 = self.side5(hx5d)
|
449 |
+
d5 = _upsample_like(d5,x)
|
450 |
+
|
451 |
+
d6 = self.side6(hx6)
|
452 |
+
d6 = _upsample_like(d6,x)
|
453 |
+
|
454 |
+
return [F.sigmoid(d1), F.sigmoid(d2), F.sigmoid(d3), F.sigmoid(d4), F.sigmoid(d5), F.sigmoid(d6)],[hx1d,hx2d,hx3d,hx4d,hx5d,hx6]
|
455 |
+
|
foo.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
def hello():
|
2 |
+
print("hello world")
|
input.jpg
ADDED
requirements.txt
CHANGED
@@ -1,26 +1,9 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
librosa==0.9.2
|
11 |
-
matplotlib==3.9.0
|
12 |
-
numpy==1.23.0
|
13 |
-
omegaconf==2.3.0
|
14 |
-
packaging==24.1
|
15 |
-
progressbar33==2.4
|
16 |
-
protobuf==3.20.*
|
17 |
-
safetensors==0.4.4
|
18 |
-
sentencepiece==0.1.99
|
19 |
-
scipy==1.8.0
|
20 |
-
soundfile==0.12.1
|
21 |
-
torchlibrosa==0.1.0
|
22 |
-
tqdm==4.63.1
|
23 |
-
wandb==0.12.14
|
24 |
-
ipython==8.12.0
|
25 |
-
gradio==4.3.0
|
26 |
-
wavio==0.0.7
|
|
|
1 |
+
gradio==4.16.0
|
2 |
+
gradio_imageslider
|
3 |
+
#torch
|
4 |
+
#torchvision
|
5 |
+
pillow
|
6 |
+
numpy
|
7 |
+
typing
|
8 |
+
gitpython
|
9 |
+
huggingface_hub
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|