Spaces:
Runtime error
Runtime error
Fabrice-TIERCELIN
commited on
Fix indentation
Browse files
app.py
CHANGED
@@ -9,6 +9,7 @@ from huggingface_hub import snapshot_download
|
|
9 |
from models import AudioDiffusion, DDPMScheduler
|
10 |
from audioldm.audio.stft import TacotronSTFT
|
11 |
from audioldm.variational_autoencoder import AutoencoderKL
|
|
|
12 |
|
13 |
# Automatic device detection
|
14 |
if torch.cuda.is_available():
|
@@ -55,7 +56,7 @@ class Tango:
|
|
55 |
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
|
56 |
# Generate audio for a single prompt string
|
57 |
with torch.no_grad():
|
58 |
-
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress
|
59 |
mel = self.vae.decode_first_stage(latents)
|
60 |
wave = self.vae.decode_to_waveform(mel)
|
61 |
return wave
|
@@ -112,18 +113,30 @@ def text2audio(
|
|
112 |
start = time.time()
|
113 |
output_wave = tango.generate(prompt, steps, guidance, output_number)
|
114 |
|
115 |
-
output_filename_1 = "
|
116 |
wavio.write(output_filename_1, output_wave[0], rate = 16000, sampwidth = 2)
|
117 |
|
|
|
|
|
|
|
|
|
118 |
if (2 <= output_number):
|
119 |
-
output_filename_2 = "
|
120 |
wavio.write(output_filename_2, output_wave[1], rate = 16000, sampwidth = 2)
|
|
|
|
|
|
|
|
|
121 |
else:
|
122 |
output_filename_2 = None
|
123 |
|
124 |
if (output_number == 3):
|
125 |
-
output_filename_3 = "
|
126 |
wavio.write(output_filename_3, output_wave[2], rate = 16000, sampwidth = 2)
|
|
|
|
|
|
|
|
|
127 |
else:
|
128 |
output_filename_3 = None
|
129 |
|
|
|
9 |
from models import AudioDiffusion, DDPMScheduler
|
10 |
from audioldm.audio.stft import TacotronSTFT
|
11 |
from audioldm.variational_autoencoder import AutoencoderKL
|
12 |
+
from pydub import AudioSegment
|
13 |
|
14 |
# Automatic device detection
|
15 |
if torch.cuda.is_available():
|
|
|
56 |
def generate(self, prompt, steps = 100, guidance = 3, samples = 1, disable_progress = True):
|
57 |
# Generate audio for a single prompt string
|
58 |
with torch.no_grad():
|
59 |
+
latents = self.model.inference([prompt], self.scheduler, steps, guidance, samples, disable_progress = disable_progress)
|
60 |
mel = self.vae.decode_first_stage(latents)
|
61 |
wave = self.vae.decode_to_waveform(mel)
|
62 |
return wave
|
|
|
113 |
start = time.time()
|
114 |
output_wave = tango.generate(prompt, steps, guidance, output_number)
|
115 |
|
116 |
+
output_filename_1 = "tmp1.wav"
|
117 |
wavio.write(output_filename_1, output_wave[0], rate = 16000, sampwidth = 2)
|
118 |
|
119 |
+
if (output_format == "mp3"):
|
120 |
+
AudioSegment.from_wav("tmp1.wav").export("tmp1.mp3", format = "mp3")
|
121 |
+
output_filename_1 = "tmp1.mp3"
|
122 |
+
|
123 |
if (2 <= output_number):
|
124 |
+
output_filename_2 = "tmp2.wav"
|
125 |
wavio.write(output_filename_2, output_wave[1], rate = 16000, sampwidth = 2)
|
126 |
+
|
127 |
+
if (output_format == "mp3"):
|
128 |
+
AudioSegment.from_wav("tmp2.wav").export("tmp2.mp3", format = "mp3")
|
129 |
+
output_filename_2 = "tmp2.mp3"
|
130 |
else:
|
131 |
output_filename_2 = None
|
132 |
|
133 |
if (output_number == 3):
|
134 |
+
output_filename_3 = "tmp3.wav"
|
135 |
wavio.write(output_filename_3, output_wave[2], rate = 16000, sampwidth = 2)
|
136 |
+
|
137 |
+
if (output_format == "mp3"):
|
138 |
+
AudioSegment.from_wav("tmp3.wav").export("tmp3.mp3", format = "mp3")
|
139 |
+
output_filename_3 = "tmp3.mp3"
|
140 |
else:
|
141 |
output_filename_3 = None
|
142 |
|