Spaces:
Running
Running
My app
Browse files
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from diffusers import StableDiffusionXLInpaintPipeline
|
2 |
+
import gradio as gr
|
3 |
+
import numpy as np
|
4 |
+
import math
|
5 |
+
import random
|
6 |
+
import imageio
|
7 |
+
from PIL import Image
|
8 |
+
from PIL import ImageFilter
|
9 |
+
import torch
|
10 |
+
import modin.pandas as pd
|
11 |
+
|
12 |
+
max_64_bit_int = 2**63 - 1
|
13 |
+
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
pipe = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", safety_checker = None)
|
16 |
+
pipe = pipe.to(device)
|
17 |
+
|
18 |
+
def noise_color(color, noise):
|
19 |
+
return color + random.randint(- noise, noise)
|
20 |
+
|
21 |
+
def predict(source_img, enlarge_top, enlarge_right, enlarge_bottom, enlarge_left, prompt, negative_prompt, denoising_steps, num_inference_steps, guidance_scale, randomize_seed, seed, progress=gr.Progress()):
|
22 |
+
progress(0, desc = "Preparing data...")
|
23 |
+
|
24 |
+
if source_img is None:
|
25 |
+
raise gr.Error("Please provide an image.")
|
26 |
+
|
27 |
+
if prompt is None or prompt == "":
|
28 |
+
raise gr.Error("Please provide a prompt input.")
|
29 |
+
|
30 |
+
if negative_prompt is None or negative_prompt == "":
|
31 |
+
raise gr.Error("Please provide a negative prompt input.")
|
32 |
+
|
33 |
+
if enlarge_top < 0 or enlarge_right < 0 or enlarge_bottom < 0 or enlarge_left < 0:
|
34 |
+
raise gr.Error("Please only provide positive margins.")
|
35 |
+
|
36 |
+
if enlarge_top == 0 and enlarge_right == 0 and enlarge_bottom == 0 and enlarge_left == 0:
|
37 |
+
raise gr.Error("At least one border must be enlarged.")
|
38 |
+
|
39 |
+
if randomize_seed:
|
40 |
+
seed = random.randint(0, max_64_bit_int)
|
41 |
+
|
42 |
+
random.seed(seed)
|
43 |
+
#pipe = pipe.manual_seed(seed)
|
44 |
+
|
45 |
+
imageio.imwrite("data.png", source_img)
|
46 |
+
|
47 |
+
# Input image
|
48 |
+
input_image = Image.open("data.png").convert("RGB")
|
49 |
+
original_height, original_width, original_channel = np.array(input_image).shape
|
50 |
+
output_width = enlarge_left + original_width + enlarge_right
|
51 |
+
output_height = enlarge_top + original_height + enlarge_bottom
|
52 |
+
|
53 |
+
# Enlarged image
|
54 |
+
enlarged_image = Image.new(mode = input_image.mode, size = (original_height, original_width), color = "black")
|
55 |
+
enlarged_image.paste(input_image, (0, 0))
|
56 |
+
enlarged_image = enlarged_image.resize((output_width, output_height))
|
57 |
+
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(25))
|
58 |
+
|
59 |
+
enlarged_image.paste(input_image, (enlarge_left, enlarge_top))
|
60 |
+
|
61 |
+
horizontally_mirrored_input_image = input_image.transpose(Image.FLIP_LEFT_RIGHT).resize((original_width * 2, original_height))
|
62 |
+
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left - (original_width * 2), enlarge_top))
|
63 |
+
enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left + original_width, enlarge_top))
|
64 |
+
|
65 |
+
vertically_mirrored_input_image = input_image.transpose(Image.FLIP_TOP_BOTTOM).resize((original_width, original_height * 2))
|
66 |
+
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top - (original_height * 2)))
|
67 |
+
enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top + original_height))
|
68 |
+
|
69 |
+
returned_input_image = input_image.transpose(Image.ROTATE_180).resize((original_width * 2, original_height * 2))
|
70 |
+
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top - (original_height * 2)))
|
71 |
+
enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top + original_height))
|
72 |
+
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top - (original_height * 2)))
|
73 |
+
enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top + original_height))
|
74 |
+
|
75 |
+
enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(25))
|
76 |
+
|
77 |
+
# Noise image
|
78 |
+
noise_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "black")
|
79 |
+
enlarged_pixels = enlarged_image.load()
|
80 |
+
|
81 |
+
for i in range(output_width):
|
82 |
+
for j in range(output_height):
|
83 |
+
enlarged_pixel = enlarged_pixels[i, j]
|
84 |
+
noise = max(min(abs(enlarge_left - i), abs(enlarge_top + original_width - i)), abs(enlarge_top - j), abs(enlarge_top + original_height - j))), 255)
|
85 |
+
noise_image.putpixel((i, j), (noise_color(enlarged_pixel[0], noise), noise_color(enlarged_pixel[1], noise), noise_color(enlarged_pixel[2], noise), 255))
|
86 |
+
|
87 |
+
enlarged_image.paste(noise_image, (0, 0))
|
88 |
+
enlarged_image.paste(input_image, (enlarge_left, enlarge_top))
|
89 |
+
|
90 |
+
# Mask
|
91 |
+
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
|
92 |
+
black_mask = Image.new(mode = input_image.mode, size = (original_width - 20, original_height - 20), color = (0, 0, 0, 0))
|
93 |
+
mask_image.paste(black_mask, (enlarge_left + 10, enlarge_top + 10))
|
94 |
+
mask_image = mask_image.filter(ImageFilter.BoxBlur(10))
|
95 |
+
|
96 |
+
limitation = "";
|
97 |
+
|
98 |
+
# Limited to 1 million pixels
|
99 |
+
if 1024 * 1024 < output_width * output_height:
|
100 |
+
factor = ((1024 * 1024) / (output_width * output_height))**0.5
|
101 |
+
output_width = math.floor(output_width * factor)
|
102 |
+
output_height = math.floor(output_height * factor)
|
103 |
+
|
104 |
+
limitation = " Due to technical limitation, the image have been downscaled.";
|
105 |
+
|
106 |
+
# Width and height must be multiple of 8
|
107 |
+
output_width = output_width - (output_width % 8)
|
108 |
+
output_height = output_height - (output_height % 8)
|
109 |
+
progress(None, desc = "Processing...")
|
110 |
+
|
111 |
+
output_image = pipe(seeds=[seed], width = output_width, height = output_height, prompt = prompt, negative_prompt = negative_prompt, image = enlarged_image, mask_image = mask_image, num_inference_steps = num_inference_steps, guidance_scale = guidance_scale, denoising_steps = denoising_steps, show_progress_bar = True).images[0]
|
112 |
+
return [output_image, "Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + str(output_width * output_height) + " pixels." + limitation, input_image, enlarged_image, mask_image]
|
113 |
+
|
114 |
+
title = "Uncrop"
|
115 |
+
description = "<p style='text-align: center;'>Enlarges the point of view of your image, up to 1 million pixels, freely, without account, without watermark, which can be downloaded</p><br/><br/>Powered by <i>SDXL 1.0</i> artificial intellingence<br/><ul><li>If you need to change the <b>view angle</b> of your image, I recommend you to use <i>Zero123</i>,</li><li>If you need to <b>upscale</b> your image, I recommend you to use <i>Ilaria Upscaler</i>,</li><li>If you need to <b>slightly change</b> your image, I recommend you to use <i>Image-to-Image SDXL</i>,</li><li>If you need to change <b>one detail</b> on your image, I recommend you to use <i>Inpaint SDXL</i>.</li></ul><br/>🐌 Slow process... ~20 min with 20 inference steps, ~6 hours with 25 inference steps.<br>You can duplicate this space on a free account, it works on CPU.<br/><a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Uncrop?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a><br/><br/>⚖️ You can use, modify and share the generated images but not for commercial uses."
|
116 |
+
gr.Interface(fn = predict, inputs = [
|
117 |
+
gr.Image(label = "Your image", source = "upload", type = "numpy"),
|
118 |
+
gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on top", info = "in pixels"),
|
119 |
+
gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on right", info = "in pixels"),
|
120 |
+
gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on bottom", info = "in pixels"),
|
121 |
+
gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on left", info = "in pixels"),
|
122 |
+
gr.Textbox(label = 'Prompt', info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = 'Describe what you want to see in the entire image'),
|
123 |
+
gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur'),
|
124 |
+
gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result"),
|
125 |
+
gr.Slider(minimum = 10, maximum = 25, value = 10, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality"),
|
126 |
+
gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt"),
|
127 |
+
gr.Checkbox(label = "Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different"),
|
128 |
+
gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
|
129 |
+
], outputs = [
|
130 |
+
gr.Image(label = "Uncropped image"),
|
131 |
+
gr.Label(),
|
132 |
+
gr.Image(label = "Original image"),
|
133 |
+
gr.Image(label = "Enlarged image"),
|
134 |
+
gr.Image(label = "Mask image")
|
135 |
+
], title = title, description = description).launch(max_threads = True)
|