Fabrice-TIERCELIN commited on
Commit
4f5118b
·
verified ·
1 Parent(s): b43a292
Files changed (1) hide show
  1. app.py +135 -0
app.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from diffusers import StableDiffusionXLInpaintPipeline
2
+ import gradio as gr
3
+ import numpy as np
4
+ import math
5
+ import random
6
+ import imageio
7
+ from PIL import Image
8
+ from PIL import ImageFilter
9
+ import torch
10
+ import modin.pandas as pd
11
+
12
+ max_64_bit_int = 2**63 - 1
13
+
14
+ device = "cuda" if torch.cuda.is_available() else "cpu"
15
+ pipe = StableDiffusionXLInpaintPipeline.from_pretrained("stabilityai/stable-diffusion-xl-refiner-1.0", safety_checker = None)
16
+ pipe = pipe.to(device)
17
+
18
+ def noise_color(color, noise):
19
+ return color + random.randint(- noise, noise)
20
+
21
+ def predict(source_img, enlarge_top, enlarge_right, enlarge_bottom, enlarge_left, prompt, negative_prompt, denoising_steps, num_inference_steps, guidance_scale, randomize_seed, seed, progress=gr.Progress()):
22
+ progress(0, desc = "Preparing data...")
23
+
24
+ if source_img is None:
25
+ raise gr.Error("Please provide an image.")
26
+
27
+ if prompt is None or prompt == "":
28
+ raise gr.Error("Please provide a prompt input.")
29
+
30
+ if negative_prompt is None or negative_prompt == "":
31
+ raise gr.Error("Please provide a negative prompt input.")
32
+
33
+ if enlarge_top < 0 or enlarge_right < 0 or enlarge_bottom < 0 or enlarge_left < 0:
34
+ raise gr.Error("Please only provide positive margins.")
35
+
36
+ if enlarge_top == 0 and enlarge_right == 0 and enlarge_bottom == 0 and enlarge_left == 0:
37
+ raise gr.Error("At least one border must be enlarged.")
38
+
39
+ if randomize_seed:
40
+ seed = random.randint(0, max_64_bit_int)
41
+
42
+ random.seed(seed)
43
+ #pipe = pipe.manual_seed(seed)
44
+
45
+ imageio.imwrite("data.png", source_img)
46
+
47
+ # Input image
48
+ input_image = Image.open("data.png").convert("RGB")
49
+ original_height, original_width, original_channel = np.array(input_image).shape
50
+ output_width = enlarge_left + original_width + enlarge_right
51
+ output_height = enlarge_top + original_height + enlarge_bottom
52
+
53
+ # Enlarged image
54
+ enlarged_image = Image.new(mode = input_image.mode, size = (original_height, original_width), color = "black")
55
+ enlarged_image.paste(input_image, (0, 0))
56
+ enlarged_image = enlarged_image.resize((output_width, output_height))
57
+ enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(25))
58
+
59
+ enlarged_image.paste(input_image, (enlarge_left, enlarge_top))
60
+
61
+ horizontally_mirrored_input_image = input_image.transpose(Image.FLIP_LEFT_RIGHT).resize((original_width * 2, original_height))
62
+ enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left - (original_width * 2), enlarge_top))
63
+ enlarged_image.paste(horizontally_mirrored_input_image, (enlarge_left + original_width, enlarge_top))
64
+
65
+ vertically_mirrored_input_image = input_image.transpose(Image.FLIP_TOP_BOTTOM).resize((original_width, original_height * 2))
66
+ enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top - (original_height * 2)))
67
+ enlarged_image.paste(vertically_mirrored_input_image, (enlarge_left, enlarge_top + original_height))
68
+
69
+ returned_input_image = input_image.transpose(Image.ROTATE_180).resize((original_width * 2, original_height * 2))
70
+ enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top - (original_height * 2)))
71
+ enlarged_image.paste(returned_input_image, (enlarge_left - (original_width * 2), enlarge_top + original_height))
72
+ enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top - (original_height * 2)))
73
+ enlarged_image.paste(returned_input_image, (enlarge_left + original_width, enlarge_top + original_height))
74
+
75
+ enlarged_image = enlarged_image.filter(ImageFilter.BoxBlur(25))
76
+
77
+ # Noise image
78
+ noise_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "black")
79
+ enlarged_pixels = enlarged_image.load()
80
+
81
+ for i in range(output_width):
82
+ for j in range(output_height):
83
+ enlarged_pixel = enlarged_pixels[i, j]
84
+ noise = max(min(abs(enlarge_left - i), abs(enlarge_top + original_width - i)), abs(enlarge_top - j), abs(enlarge_top + original_height - j))), 255)
85
+ noise_image.putpixel((i, j), (noise_color(enlarged_pixel[0], noise), noise_color(enlarged_pixel[1], noise), noise_color(enlarged_pixel[2], noise), 255))
86
+
87
+ enlarged_image.paste(noise_image, (0, 0))
88
+ enlarged_image.paste(input_image, (enlarge_left, enlarge_top))
89
+
90
+ # Mask
91
+ mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = (255, 255, 255, 0))
92
+ black_mask = Image.new(mode = input_image.mode, size = (original_width - 20, original_height - 20), color = (0, 0, 0, 0))
93
+ mask_image.paste(black_mask, (enlarge_left + 10, enlarge_top + 10))
94
+ mask_image = mask_image.filter(ImageFilter.BoxBlur(10))
95
+
96
+ limitation = "";
97
+
98
+ # Limited to 1 million pixels
99
+ if 1024 * 1024 < output_width * output_height:
100
+ factor = ((1024 * 1024) / (output_width * output_height))**0.5
101
+ output_width = math.floor(output_width * factor)
102
+ output_height = math.floor(output_height * factor)
103
+
104
+ limitation = " Due to technical limitation, the image have been downscaled.";
105
+
106
+ # Width and height must be multiple of 8
107
+ output_width = output_width - (output_width % 8)
108
+ output_height = output_height - (output_height % 8)
109
+ progress(None, desc = "Processing...")
110
+
111
+ output_image = pipe(seeds=[seed], width = output_width, height = output_height, prompt = prompt, negative_prompt = negative_prompt, image = enlarged_image, mask_image = mask_image, num_inference_steps = num_inference_steps, guidance_scale = guidance_scale, denoising_steps = denoising_steps, show_progress_bar = True).images[0]
112
+ return [output_image, "Start again to get a different result. The new image is " + str(output_width) + " pixels large and " + str(output_height) + " pixels high, so an image of " + str(output_width * output_height) + " pixels." + limitation, input_image, enlarged_image, mask_image]
113
+
114
+ title = "Uncrop"
115
+ description = "<p style='text-align: center;'>Enlarges the point of view of your image, up to 1 million pixels, freely, without account, without watermark, which can be downloaded</p><br/><br/>Powered by <i>SDXL 1.0</i> artificial intellingence<br/><ul><li>If you need to change the <b>view angle</b> of your image, I recommend you to use <i>Zero123</i>,</li><li>If you need to <b>upscale</b> your image, I recommend you to use <i>Ilaria Upscaler</i>,</li><li>If you need to <b>slightly change</b> your image, I recommend you to use <i>Image-to-Image SDXL</i>,</li><li>If you need to change <b>one detail</b> on your image, I recommend you to use <i>Inpaint SDXL</i>.</li></ul><br/>🐌 Slow process... ~20 min with 20 inference steps, ~6 hours with 25 inference steps.<br>You can duplicate this space on a free account, it works on CPU.<br/><a href='https://huggingface.co/spaces/Fabrice-TIERCELIN/Uncrop?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14'></a><br/><br/>⚖️ You can use, modify and share the generated images but not for commercial uses."
116
+ gr.Interface(fn = predict, inputs = [
117
+ gr.Image(label = "Your image", source = "upload", type = "numpy"),
118
+ gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on top", info = "in pixels"),
119
+ gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on right", info = "in pixels"),
120
+ gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on bottom", info = "in pixels"),
121
+ gr.Number(minimum = 0, value = 64, precision = 0, label = "Enlarge on left", info = "in pixels"),
122
+ gr.Textbox(label = 'Prompt', info = "Describe the subject, the background and the style of image; 77 token limit", placeholder = 'Describe what you want to see in the entire image'),
123
+ gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the entire image', value = 'Border, frame, painting, scribbling, smear, noise, blur'),
124
+ gr.Slider(minimum = 0, maximum = 1000, value = 1000, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result"),
125
+ gr.Slider(minimum = 10, maximum = 25, value = 10, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality"),
126
+ gr.Slider(minimum = 1, maximum = 13, value = 7, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt"),
127
+ gr.Checkbox(label = "Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different"),
128
+ gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
129
+ ], outputs = [
130
+ gr.Image(label = "Uncropped image"),
131
+ gr.Label(),
132
+ gr.Image(label = "Original image"),
133
+ gr.Image(label = "Enlarged image"),
134
+ gr.Image(label = "Mask image")
135
+ ], title = title, description = description).launch(max_threads = True)