Spaces:
Running
on
Zero
Running
on
Zero
Fabrice-TIERCELIN
commited on
Commit
•
b64e08d
1
Parent(s):
3fc78c3
AdaIn
Browse files
app.py
CHANGED
@@ -139,10 +139,14 @@ def stage2_process(*args, **kwargs):
|
|
139 |
return restore_in_Xmin(*args, **kwargs)
|
140 |
except Exception as e:
|
141 |
# NO_GPU_MESSAGE_INQUEUE
|
142 |
-
print("gradio.exceptions.Error
|
143 |
-
print('str(type(e)) ' + str(type(e))) # <class 'gradio.exceptions.Error'>
|
144 |
-
print('str(e) ' + str(e)) #
|
145 |
-
|
|
|
|
|
|
|
|
|
146 |
print('Exception identified!!!')
|
147 |
#if str(type(e)) == "<class 'gradio.exceptions.Error'>":
|
148 |
#print('Exception of name ' + type(e).__name__)
|
@@ -538,7 +542,7 @@ with gr.Blocks() as interface:
|
|
538 |
with gr.Group():
|
539 |
prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; you can write in any language", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3)
|
540 |
prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
|
541 |
-
upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8], ["x9", 9], ["x10", 10]
|
542 |
output_format = gr.Radio([["As input", "input"], ["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="input", interactive=True)
|
543 |
allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5], ["6 min", 6], ["7 min (discouraged)", 7], ["8 min (discouraged)", 8], ["9 min (discouraged)", 9], ["10 min (discouraged)", 10]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=5, interactive=True)
|
544 |
|
@@ -573,7 +577,7 @@ with gr.Blocks() as interface:
|
|
573 |
model_select = gr.Radio([["💃 Quality (v0-Q)", "v0-Q"], ["🎯 Fidelity (v0-F)", "v0-F"]], label="Model Selection", info="Pretrained model", value="v0-Q",
|
574 |
interactive=True)
|
575 |
with gr.Column():
|
576 |
-
color_fix_type = gr.Radio([["None", "None"], ["AdaIn (improve as a photo)", "AdaIn"], ["Wavelet (for JPEG artifacts)", "Wavelet"]], label="Color-Fix Type", info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts", value="
|
577 |
interactive=True)
|
578 |
s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
|
579 |
value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
|
|
|
139 |
return restore_in_Xmin(*args, **kwargs)
|
140 |
except Exception as e:
|
141 |
# NO_GPU_MESSAGE_INQUEUE
|
142 |
+
print("gradio.exceptions.Error 'No GPU is currently available for you after 60s'")
|
143 |
+
print('str(type(e)): ' + str(type(e))) # <class 'gradio.exceptions.Error'>
|
144 |
+
print('str(e): ' + str(e)) # You have exceeded your GPU quota...
|
145 |
+
try:
|
146 |
+
print('e.message: ' + e.message) # No GPU is currently available for you after 60s
|
147 |
+
except Exception as e2:
|
148 |
+
print('Failure')
|
149 |
+
if str(e).startswith("No GPU is currently available for you after 60s"):
|
150 |
print('Exception identified!!!')
|
151 |
#if str(type(e)) == "<class 'gradio.exceptions.Error'>":
|
152 |
#print('Exception of name ' + type(e).__name__)
|
|
|
542 |
with gr.Group():
|
543 |
prompt = gr.Textbox(label="Image description", info="Help the AI understand what the image represents; describe as much as possible, especially the details we can't see on the original image; you can write in any language", value="", placeholder="A 33 years old man, walking, in the street, Santiago, morning, Summer, photorealistic", lines=3)
|
544 |
prompt_hint = gr.HTML("You can use a <a href='"'https://huggingface.co/spaces/MaziyarPanahi/llava-llama-3-8b'"'>LlaVa space</a> to auto-generate the description of your image.")
|
545 |
+
upscale = gr.Radio([["x1", 1], ["x2", 2], ["x3", 3], ["x4", 4], ["x5", 5], ["x6", 6], ["x7", 7], ["x8", 8], ["x9", 9], ["x10", 10]], label="Upscale factor", info="Resolution x1 to x10", value=2, interactive=True)
|
546 |
output_format = gr.Radio([["As input", "input"], ["*.png", "png"], ["*.webp", "webp"], ["*.jpeg", "jpeg"], ["*.gif", "gif"], ["*.bmp", "bmp"]], label="Image format for result", info="File extention", value="input", interactive=True)
|
547 |
allocation = gr.Radio([["1 min", 1], ["2 min", 2], ["3 min", 3], ["4 min", 4], ["5 min", 5], ["6 min", 6], ["7 min (discouraged)", 7], ["8 min (discouraged)", 8], ["9 min (discouraged)", 9], ["10 min (discouraged)", 10]], label="GPU allocation time", info="lower=May abort run, higher=Quota penalty for next runs", value=5, interactive=True)
|
548 |
|
|
|
577 |
model_select = gr.Radio([["💃 Quality (v0-Q)", "v0-Q"], ["🎯 Fidelity (v0-F)", "v0-F"]], label="Model Selection", info="Pretrained model", value="v0-Q",
|
578 |
interactive=True)
|
579 |
with gr.Column():
|
580 |
+
color_fix_type = gr.Radio([["None", "None"], ["AdaIn (improve as a photo)", "AdaIn"], ["Wavelet (for JPEG artifacts)", "Wavelet"]], label="Color-Fix Type", info="AdaIn=Improve following a style, Wavelet=For JPEG artifacts", value="AdaIn",
|
581 |
interactive=True)
|
582 |
s_cfg = gr.Slider(label="Text Guidance Scale", info="lower=follow the image, higher=follow the prompt", minimum=1.0, maximum=15.0,
|
583 |
value=default_setting.s_cfg_Quality if torch.cuda.device_count() > 0 else 1.0, step=0.1)
|