Spaces:
Running
on
Zero
Running
on
Zero
Fabrice-TIERCELIN
commited on
Upload 7 files
Browse files- llava/model/__init__.py +2 -0
- llava/model/apply_delta.py +48 -0
- llava/model/builder.py +148 -0
- llava/model/consolidate.py +29 -0
- llava/model/llava_arch.py +256 -0
- llava/model/make_delta.py +52 -0
- llava/model/utils.py +20 -0
llava/model/__init__.py
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
from .language_model.llava_llama import LlavaLlamaForCausalLM, LlavaConfig
|
2 |
+
from .language_model.llava_mpt import LlavaMPTForCausalLM, LlavaMPTConfig
|
llava/model/apply_delta.py
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage:
|
3 |
+
python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from tqdm import tqdm
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
+
from llava import LlavaLlamaForCausalLM
|
11 |
+
|
12 |
+
|
13 |
+
def apply_delta(base_model_path, target_model_path, delta_path):
|
14 |
+
print("Loading base model")
|
15 |
+
base = AutoModelForCausalLM.from_pretrained(
|
16 |
+
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
17 |
+
|
18 |
+
print("Loading delta")
|
19 |
+
delta = LlavaLlamaForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
20 |
+
delta_tokenizer = AutoTokenizer.from_pretrained(delta_path)
|
21 |
+
|
22 |
+
print("Applying delta")
|
23 |
+
for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"):
|
24 |
+
if name not in base.state_dict():
|
25 |
+
assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
|
26 |
+
continue
|
27 |
+
if param.data.shape == base.state_dict()[name].shape:
|
28 |
+
param.data += base.state_dict()[name]
|
29 |
+
else:
|
30 |
+
assert name in ['model.embed_tokens.weight', 'lm_head.weight'], \
|
31 |
+
f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
|
32 |
+
bparam = base.state_dict()[name]
|
33 |
+
param.data[:bparam.shape[0], :bparam.shape[1]] += bparam
|
34 |
+
|
35 |
+
print("Saving target model")
|
36 |
+
delta.save_pretrained(target_model_path)
|
37 |
+
delta_tokenizer.save_pretrained(target_model_path)
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == "__main__":
|
41 |
+
parser = argparse.ArgumentParser()
|
42 |
+
parser.add_argument("--base-model-path", type=str, required=True)
|
43 |
+
parser.add_argument("--target-model-path", type=str, required=True)
|
44 |
+
parser.add_argument("--delta-path", type=str, required=True)
|
45 |
+
|
46 |
+
args = parser.parse_args()
|
47 |
+
|
48 |
+
apply_delta(args.base_model_path, args.target_model_path, args.delta_path)
|
llava/model/builder.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
import os
|
17 |
+
import warnings
|
18 |
+
import shutil
|
19 |
+
|
20 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig
|
21 |
+
import torch
|
22 |
+
from llava.model import *
|
23 |
+
from llava.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
24 |
+
|
25 |
+
|
26 |
+
def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda"):
|
27 |
+
kwargs = {"device_map": device_map}
|
28 |
+
|
29 |
+
if load_8bit:
|
30 |
+
kwargs['load_in_8bit'] = True
|
31 |
+
elif load_4bit:
|
32 |
+
kwargs['load_in_4bit'] = True
|
33 |
+
kwargs['quantization_config'] = BitsAndBytesConfig(
|
34 |
+
load_in_4bit=True,
|
35 |
+
bnb_4bit_compute_dtype=torch.float16,
|
36 |
+
bnb_4bit_use_double_quant=True,
|
37 |
+
bnb_4bit_quant_type='nf4'
|
38 |
+
)
|
39 |
+
else:
|
40 |
+
kwargs['torch_dtype'] = torch.float16
|
41 |
+
|
42 |
+
if 'llava' in model_name.lower():
|
43 |
+
# Load LLaVA model
|
44 |
+
if 'lora' in model_name.lower() and model_base is None:
|
45 |
+
warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.')
|
46 |
+
if 'lora' in model_name.lower() and model_base is not None:
|
47 |
+
lora_cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
48 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
49 |
+
print('Loading LLaVA from base model...')
|
50 |
+
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs)
|
51 |
+
token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features
|
52 |
+
if model.lm_head.weight.shape[0] != token_num:
|
53 |
+
model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
54 |
+
model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype))
|
55 |
+
|
56 |
+
print('Loading additional LLaVA weights...')
|
57 |
+
if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')):
|
58 |
+
non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu')
|
59 |
+
else:
|
60 |
+
# this is probably from HF Hub
|
61 |
+
from huggingface_hub import hf_hub_download
|
62 |
+
def load_from_hf(repo_id, filename, subfolder=None):
|
63 |
+
cache_file = hf_hub_download(
|
64 |
+
repo_id=repo_id,
|
65 |
+
filename=filename,
|
66 |
+
subfolder=subfolder)
|
67 |
+
return torch.load(cache_file, map_location='cpu')
|
68 |
+
non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin')
|
69 |
+
non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()}
|
70 |
+
if any(k.startswith('model.model.') for k in non_lora_trainables):
|
71 |
+
non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()}
|
72 |
+
model.load_state_dict(non_lora_trainables, strict=False)
|
73 |
+
|
74 |
+
from peft import PeftModel
|
75 |
+
print('Loading LoRA weights...')
|
76 |
+
model = PeftModel.from_pretrained(model, model_path)
|
77 |
+
print('Merging LoRA weights...')
|
78 |
+
model = model.merge_and_unload()
|
79 |
+
print('Model is loaded...')
|
80 |
+
elif model_base is not None:
|
81 |
+
# this may be mm projector only
|
82 |
+
print('Loading LLaVA from base model...')
|
83 |
+
if 'mpt' in model_name.lower():
|
84 |
+
if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')):
|
85 |
+
shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py'))
|
86 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True)
|
87 |
+
cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
88 |
+
model = LlavaMPTForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
|
89 |
+
else:
|
90 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
91 |
+
cfg_pretrained = AutoConfig.from_pretrained(model_path)
|
92 |
+
model = LlavaLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs)
|
93 |
+
|
94 |
+
mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu')
|
95 |
+
mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()}
|
96 |
+
model.load_state_dict(mm_projector_weights, strict=False)
|
97 |
+
else:
|
98 |
+
if 'mpt' in model_name.lower():
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
100 |
+
model = LlavaMPTForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
101 |
+
else:
|
102 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
103 |
+
model = LlavaLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
104 |
+
else:
|
105 |
+
# Load language model
|
106 |
+
if model_base is not None:
|
107 |
+
# PEFT model
|
108 |
+
from peft import PeftModel
|
109 |
+
tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False)
|
110 |
+
model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto")
|
111 |
+
print(f"Loading LoRA weights from {model_path}")
|
112 |
+
model = PeftModel.from_pretrained(model, model_path)
|
113 |
+
print(f"Merging weights")
|
114 |
+
model = model.merge_and_unload()
|
115 |
+
print('Convert to FP16...')
|
116 |
+
model.to(torch.float16)
|
117 |
+
else:
|
118 |
+
use_fast = False
|
119 |
+
if 'mpt' in model_name.lower():
|
120 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True)
|
121 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs)
|
122 |
+
else:
|
123 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False)
|
124 |
+
model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs)
|
125 |
+
|
126 |
+
image_processor = None
|
127 |
+
|
128 |
+
if 'llava' in model_name.lower():
|
129 |
+
mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False)
|
130 |
+
mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True)
|
131 |
+
if mm_use_im_patch_token:
|
132 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
133 |
+
if mm_use_im_start_end:
|
134 |
+
tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
135 |
+
model.resize_token_embeddings(len(tokenizer))
|
136 |
+
|
137 |
+
vision_tower = model.get_vision_tower()
|
138 |
+
if not vision_tower.is_loaded:
|
139 |
+
vision_tower.load_model()
|
140 |
+
vision_tower.to(device=device, dtype=torch.float16)
|
141 |
+
image_processor = vision_tower.image_processor
|
142 |
+
|
143 |
+
if hasattr(model.config, "max_sequence_length"):
|
144 |
+
context_len = model.config.max_sequence_length
|
145 |
+
else:
|
146 |
+
context_len = 2048
|
147 |
+
|
148 |
+
return tokenizer, model, image_processor, context_len
|
llava/model/consolidate.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage:
|
3 |
+
python3 -m llava.model.consolidate --src ~/model_weights/llava-7b --dst ~/model_weights/llava-7b_consolidate
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
9 |
+
from llava.model import *
|
10 |
+
from llava.model.utils import auto_upgrade
|
11 |
+
|
12 |
+
|
13 |
+
def consolidate_ckpt(src_path, dst_path):
|
14 |
+
print("Loading model")
|
15 |
+
auto_upgrade(src_path)
|
16 |
+
src_model = AutoModelForCausalLM.from_pretrained(src_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
17 |
+
src_tokenizer = AutoTokenizer.from_pretrained(src_path, use_fast=False)
|
18 |
+
src_model.save_pretrained(dst_path)
|
19 |
+
src_tokenizer.save_pretrained(dst_path)
|
20 |
+
|
21 |
+
|
22 |
+
if __name__ == "__main__":
|
23 |
+
parser = argparse.ArgumentParser()
|
24 |
+
parser.add_argument("--src", type=str, required=True)
|
25 |
+
parser.add_argument("--dst", type=str, required=True)
|
26 |
+
|
27 |
+
args = parser.parse_args()
|
28 |
+
|
29 |
+
consolidate_ckpt(args.src, args.dst)
|
llava/model/llava_arch.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 Haotian Liu
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
|
16 |
+
from abc import ABC, abstractmethod
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn as nn
|
20 |
+
|
21 |
+
from .multimodal_encoder.builder import build_vision_tower
|
22 |
+
from .multimodal_projector.builder import build_vision_projector
|
23 |
+
|
24 |
+
from llava.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN
|
25 |
+
|
26 |
+
|
27 |
+
class LlavaMetaModel:
|
28 |
+
|
29 |
+
def __init__(self, config):
|
30 |
+
super(LlavaMetaModel, self).__init__(config)
|
31 |
+
|
32 |
+
if hasattr(config, "mm_vision_tower"):
|
33 |
+
self.vision_tower = build_vision_tower(config, delay_load=True)
|
34 |
+
self.mm_projector = build_vision_projector(config)
|
35 |
+
|
36 |
+
def get_vision_tower(self):
|
37 |
+
vision_tower = getattr(self, 'vision_tower', None)
|
38 |
+
if type(vision_tower) is list:
|
39 |
+
vision_tower = vision_tower[0]
|
40 |
+
return vision_tower
|
41 |
+
|
42 |
+
def initialize_vision_modules(self, model_args, fsdp=None):
|
43 |
+
vision_tower = model_args.vision_tower
|
44 |
+
mm_vision_select_layer = model_args.mm_vision_select_layer
|
45 |
+
mm_vision_select_feature = model_args.mm_vision_select_feature
|
46 |
+
pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter
|
47 |
+
|
48 |
+
self.config.mm_vision_tower = vision_tower
|
49 |
+
|
50 |
+
if self.get_vision_tower() is None:
|
51 |
+
vision_tower = build_vision_tower(model_args)
|
52 |
+
|
53 |
+
if fsdp is not None and len(fsdp) > 0:
|
54 |
+
self.vision_tower = [vision_tower]
|
55 |
+
else:
|
56 |
+
self.vision_tower = vision_tower
|
57 |
+
else:
|
58 |
+
if fsdp is not None and len(fsdp) > 0:
|
59 |
+
vision_tower = self.vision_tower[0]
|
60 |
+
else:
|
61 |
+
vision_tower = self.vision_tower
|
62 |
+
vision_tower.load_model()
|
63 |
+
|
64 |
+
self.config.use_mm_proj = True
|
65 |
+
self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear')
|
66 |
+
self.config.mm_hidden_size = vision_tower.hidden_size
|
67 |
+
self.config.mm_vision_select_layer = mm_vision_select_layer
|
68 |
+
self.config.mm_vision_select_feature = mm_vision_select_feature
|
69 |
+
|
70 |
+
if getattr(self, 'mm_projector', None) is None:
|
71 |
+
self.mm_projector = build_vision_projector(self.config)
|
72 |
+
|
73 |
+
if pretrain_mm_mlp_adapter is not None:
|
74 |
+
mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu')
|
75 |
+
def get_w(weights, keyword):
|
76 |
+
return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k}
|
77 |
+
|
78 |
+
self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector'))
|
79 |
+
|
80 |
+
|
81 |
+
class LlavaMetaForCausalLM(ABC):
|
82 |
+
|
83 |
+
@abstractmethod
|
84 |
+
def get_model(self):
|
85 |
+
pass
|
86 |
+
|
87 |
+
def get_vision_tower(self):
|
88 |
+
return self.get_model().get_vision_tower()
|
89 |
+
|
90 |
+
def encode_images(self, images):
|
91 |
+
image_features = self.get_model().get_vision_tower()(images)
|
92 |
+
image_features = self.get_model().mm_projector(image_features)
|
93 |
+
return image_features
|
94 |
+
|
95 |
+
def prepare_inputs_labels_for_multimodal(
|
96 |
+
self, input_ids, attention_mask, past_key_values, labels, images
|
97 |
+
):
|
98 |
+
vision_tower = self.get_vision_tower()
|
99 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
100 |
+
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
|
101 |
+
attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device)
|
102 |
+
return input_ids, attention_mask, past_key_values, None, labels
|
103 |
+
|
104 |
+
if type(images) is list or images.ndim == 5:
|
105 |
+
concat_images = torch.cat([image for image in images], dim=0)
|
106 |
+
image_features = self.encode_images(concat_images)
|
107 |
+
split_sizes = [image.shape[0] for image in images]
|
108 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
109 |
+
image_features = [x.flatten(0, 1) for x in image_features]
|
110 |
+
else:
|
111 |
+
image_features = self.encode_images(images)
|
112 |
+
|
113 |
+
new_input_embeds = []
|
114 |
+
new_labels = [] if labels is not None else None
|
115 |
+
cur_image_idx = 0
|
116 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
117 |
+
if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0:
|
118 |
+
# multimodal LLM, but the current sample is not multimodal
|
119 |
+
# FIXME: this is a hacky fix, for deepspeed zero3 to work
|
120 |
+
half_len = cur_input_ids.shape[0] // 2
|
121 |
+
cur_image_features = image_features[cur_image_idx]
|
122 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len])
|
123 |
+
cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:])
|
124 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0)
|
125 |
+
new_input_embeds.append(cur_input_embeds)
|
126 |
+
if labels is not None:
|
127 |
+
new_labels.append(labels[batch_idx])
|
128 |
+
cur_image_idx += 1
|
129 |
+
continue
|
130 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
131 |
+
cur_new_input_embeds = []
|
132 |
+
if labels is not None:
|
133 |
+
cur_labels = labels[batch_idx]
|
134 |
+
cur_new_labels = []
|
135 |
+
assert cur_labels.shape == cur_input_ids.shape
|
136 |
+
while image_token_indices.numel() > 0:
|
137 |
+
cur_image_features = image_features[cur_image_idx]
|
138 |
+
image_token_start = image_token_indices[0]
|
139 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
140 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach())
|
141 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start]))
|
142 |
+
cur_new_input_embeds.append(cur_image_features)
|
143 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2]))
|
144 |
+
if labels is not None:
|
145 |
+
cur_new_labels.append(cur_labels[:image_token_start])
|
146 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
|
147 |
+
cur_new_labels.append(cur_labels[image_token_start:image_token_start+1])
|
148 |
+
cur_labels = cur_labels[image_token_start+2:]
|
149 |
+
else:
|
150 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start]))
|
151 |
+
cur_new_input_embeds.append(cur_image_features)
|
152 |
+
if labels is not None:
|
153 |
+
cur_new_labels.append(cur_labels[:image_token_start])
|
154 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype))
|
155 |
+
cur_labels = cur_labels[image_token_start+1:]
|
156 |
+
cur_image_idx += 1
|
157 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
158 |
+
cur_input_ids = cur_input_ids[image_token_start+2:]
|
159 |
+
else:
|
160 |
+
cur_input_ids = cur_input_ids[image_token_start+1:]
|
161 |
+
image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0]
|
162 |
+
if cur_input_ids.numel() > 0:
|
163 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False):
|
164 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach())
|
165 |
+
else:
|
166 |
+
cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids))
|
167 |
+
if labels is not None:
|
168 |
+
cur_new_labels.append(cur_labels)
|
169 |
+
cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds]
|
170 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0)
|
171 |
+
new_input_embeds.append(cur_new_input_embeds)
|
172 |
+
if labels is not None:
|
173 |
+
cur_new_labels = torch.cat(cur_new_labels, dim=0)
|
174 |
+
new_labels.append(cur_new_labels)
|
175 |
+
|
176 |
+
if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds):
|
177 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
178 |
+
|
179 |
+
new_input_embeds_align = []
|
180 |
+
for cur_new_embed in new_input_embeds:
|
181 |
+
cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0)
|
182 |
+
new_input_embeds_align.append(cur_new_embed)
|
183 |
+
new_input_embeds = torch.stack(new_input_embeds_align, dim=0)
|
184 |
+
|
185 |
+
if labels is not None:
|
186 |
+
new_labels_align = []
|
187 |
+
_new_labels = new_labels
|
188 |
+
for cur_new_label in new_labels:
|
189 |
+
cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0)
|
190 |
+
new_labels_align.append(cur_new_label)
|
191 |
+
new_labels = torch.stack(new_labels_align, dim=0)
|
192 |
+
|
193 |
+
if attention_mask is not None:
|
194 |
+
new_attention_mask = []
|
195 |
+
for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels):
|
196 |
+
new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device)
|
197 |
+
new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device)
|
198 |
+
cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0)
|
199 |
+
new_attention_mask.append(cur_new_attention_mask)
|
200 |
+
attention_mask = torch.stack(new_attention_mask, dim=0)
|
201 |
+
assert attention_mask.shape == new_labels.shape
|
202 |
+
else:
|
203 |
+
new_input_embeds = torch.stack(new_input_embeds, dim=0)
|
204 |
+
if labels is not None:
|
205 |
+
new_labels = torch.stack(new_labels, dim=0)
|
206 |
+
|
207 |
+
if attention_mask is not None:
|
208 |
+
new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device)
|
209 |
+
attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1)
|
210 |
+
assert attention_mask.shape == new_input_embeds.shape[:2]
|
211 |
+
|
212 |
+
return None, attention_mask, past_key_values, new_input_embeds, new_labels
|
213 |
+
|
214 |
+
def initialize_vision_tokenizer(self, model_args, tokenizer):
|
215 |
+
if model_args.mm_use_im_patch_token:
|
216 |
+
tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True)
|
217 |
+
self.resize_token_embeddings(len(tokenizer))
|
218 |
+
|
219 |
+
if model_args.mm_use_im_start_end:
|
220 |
+
num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True)
|
221 |
+
self.resize_token_embeddings(len(tokenizer))
|
222 |
+
|
223 |
+
if num_new_tokens > 0:
|
224 |
+
input_embeddings = self.get_input_embeddings().weight.data
|
225 |
+
output_embeddings = self.get_output_embeddings().weight.data
|
226 |
+
|
227 |
+
input_embeddings_avg = input_embeddings[:-num_new_tokens].mean(
|
228 |
+
dim=0, keepdim=True)
|
229 |
+
output_embeddings_avg = output_embeddings[:-num_new_tokens].mean(
|
230 |
+
dim=0, keepdim=True)
|
231 |
+
|
232 |
+
input_embeddings[-num_new_tokens:] = input_embeddings_avg
|
233 |
+
output_embeddings[-num_new_tokens:] = output_embeddings_avg
|
234 |
+
|
235 |
+
if model_args.tune_mm_mlp_adapter:
|
236 |
+
for p in self.get_input_embeddings().parameters():
|
237 |
+
p.requires_grad = True
|
238 |
+
for p in self.get_output_embeddings().parameters():
|
239 |
+
p.requires_grad = False
|
240 |
+
|
241 |
+
if model_args.pretrain_mm_mlp_adapter:
|
242 |
+
mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu')
|
243 |
+
embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight']
|
244 |
+
assert num_new_tokens == 2
|
245 |
+
if input_embeddings.shape == embed_tokens_weight.shape:
|
246 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:]
|
247 |
+
elif embed_tokens_weight.shape[0] == num_new_tokens:
|
248 |
+
input_embeddings[-num_new_tokens:] = embed_tokens_weight
|
249 |
+
else:
|
250 |
+
raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.")
|
251 |
+
elif model_args.mm_use_im_patch_token:
|
252 |
+
if model_args.tune_mm_mlp_adapter:
|
253 |
+
for p in self.get_input_embeddings().parameters():
|
254 |
+
p.requires_grad = False
|
255 |
+
for p in self.get_output_embeddings().parameters():
|
256 |
+
p.requires_grad = False
|
llava/model/make_delta.py
ADDED
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage:
|
3 |
+
python3 -m llava.model.make_delta --base ~/model_weights/llama-7b --target ~/model_weights/llava-7b --delta ~/model_weights/llava-7b-delta --hub-repo-id liuhaotian/llava-7b-delta
|
4 |
+
"""
|
5 |
+
import argparse
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from tqdm import tqdm
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
+
from llava.model.utils import auto_upgrade
|
11 |
+
|
12 |
+
|
13 |
+
def make_delta(base_model_path, target_model_path, delta_path, hub_repo_id):
|
14 |
+
print("Loading base model")
|
15 |
+
base = AutoModelForCausalLM.from_pretrained(
|
16 |
+
base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
17 |
+
|
18 |
+
print("Loading target model")
|
19 |
+
auto_upgrade(target_model_path)
|
20 |
+
target = AutoModelForCausalLM.from_pretrained(target_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
21 |
+
|
22 |
+
print("Calculating delta")
|
23 |
+
for name, param in tqdm(target.state_dict().items(), desc="Calculating delta"):
|
24 |
+
if name not in base.state_dict():
|
25 |
+
assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model'
|
26 |
+
continue
|
27 |
+
if param.data.shape == base.state_dict()[name].shape:
|
28 |
+
param.data -= base.state_dict()[name]
|
29 |
+
else:
|
30 |
+
assert name in ['model.embed_tokens.weight', 'lm_head.weight'], f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}'
|
31 |
+
bparam = base.state_dict()[name]
|
32 |
+
param.data[:bparam.shape[0], :bparam.shape[1]] -= bparam
|
33 |
+
|
34 |
+
print("Saving delta")
|
35 |
+
if hub_repo_id:
|
36 |
+
kwargs = {"push_to_hub": True, "repo_id": hub_repo_id}
|
37 |
+
else:
|
38 |
+
kwargs = {}
|
39 |
+
target.save_pretrained(delta_path, **kwargs)
|
40 |
+
target_tokenizer = AutoTokenizer.from_pretrained(target_model_path)
|
41 |
+
target_tokenizer.save_pretrained(delta_path, **kwargs)
|
42 |
+
|
43 |
+
|
44 |
+
if __name__ == "__main__":
|
45 |
+
parser = argparse.ArgumentParser()
|
46 |
+
parser.add_argument("--base-model-path", type=str, required=True)
|
47 |
+
parser.add_argument("--target-model-path", type=str, required=True)
|
48 |
+
parser.add_argument("--delta-path", type=str, required=True)
|
49 |
+
parser.add_argument("--hub-repo-id", type=str, default=None)
|
50 |
+
args = parser.parse_args()
|
51 |
+
|
52 |
+
make_delta(args.base_model_path, args.target_model_path, args.delta_path, args.hub_repo_id)
|
llava/model/utils.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoConfig
|
2 |
+
|
3 |
+
|
4 |
+
def auto_upgrade(config):
|
5 |
+
cfg = AutoConfig.from_pretrained(config)
|
6 |
+
if 'llava' in config and 'llava' not in cfg.model_type:
|
7 |
+
assert cfg.model_type == 'llama'
|
8 |
+
print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.")
|
9 |
+
print("You must upgrade the checkpoint to the new code base (this can be done automatically).")
|
10 |
+
confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]")
|
11 |
+
if confirm.lower() in ["y", "yes"]:
|
12 |
+
print("Upgrading checkpoint...")
|
13 |
+
assert len(cfg.architectures) == 1
|
14 |
+
setattr(cfg.__class__, "model_type", "llava")
|
15 |
+
cfg.architectures[0] = 'LlavaLlamaForCausalLM'
|
16 |
+
cfg.save_pretrained(config)
|
17 |
+
print("Checkpoint upgraded.")
|
18 |
+
else:
|
19 |
+
print("Checkpoint upgrade aborted.")
|
20 |
+
exit(1)
|