Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from ...util import default, instantiate_from_config | |
| class EDMSampling: | |
| def __init__(self, p_mean=-1.2, p_std=1.2): | |
| self.p_mean = p_mean | |
| self.p_std = p_std | |
| def __call__(self, n_samples, rand=None): | |
| log_sigma = self.p_mean + self.p_std * default(rand, torch.randn((n_samples,))) | |
| return log_sigma.exp() | |
| class DiscreteSampling: | |
| def __init__(self, discretization_config, num_idx, do_append_zero=False, flip=True, idx_range=None): | |
| self.num_idx = num_idx | |
| self.sigmas = instantiate_from_config(discretization_config)( | |
| num_idx, do_append_zero=do_append_zero, flip=flip | |
| ) | |
| self.idx_range = idx_range | |
| def idx_to_sigma(self, idx): | |
| # print(self.sigmas[idx]) | |
| return self.sigmas[idx] | |
| def __call__(self, n_samples, rand=None): | |
| if self.idx_range is None: | |
| idx = default( | |
| rand, | |
| torch.randint(0, self.num_idx, (n_samples,)), | |
| ) | |
| else: | |
| idx = default( | |
| rand, | |
| torch.randint(self.idx_range[0], self.idx_range[1], (n_samples,)), | |
| ) | |
| return self.idx_to_sigma(idx) | |