Fabrice-TIERCELIN
commited on
Commit
•
4a53f08
1
Parent(s):
e3a7d70
Image Guidance Scale
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ import time
|
|
10 |
import math
|
11 |
import random
|
12 |
import imageio
|
13 |
-
from PIL import
|
14 |
import torch
|
15 |
|
16 |
max_64_bit_int = 2**63 - 1
|
@@ -29,6 +29,7 @@ def check(
|
|
29 |
denoising_steps,
|
30 |
num_inference_steps,
|
31 |
guidance_scale,
|
|
|
32 |
randomize_seed,
|
33 |
seed,
|
34 |
progress = gr.Progress()):
|
@@ -45,6 +46,7 @@ def pix2pix(
|
|
45 |
denoising_steps,
|
46 |
num_inference_steps,
|
47 |
guidance_scale,
|
|
|
48 |
randomize_seed,
|
49 |
seed,
|
50 |
progress = gr.Progress()):
|
@@ -55,6 +57,7 @@ def pix2pix(
|
|
55 |
denoising_steps,
|
56 |
num_inference_steps,
|
57 |
guidance_scale,
|
|
|
58 |
randomize_seed,
|
59 |
seed
|
60 |
)
|
@@ -73,6 +76,9 @@ def pix2pix(
|
|
73 |
if guidance_scale is None:
|
74 |
guidance_scale = 5
|
75 |
|
|
|
|
|
|
|
76 |
if randomize_seed:
|
77 |
seed = random.randint(0, max_64_bit_int)
|
78 |
|
@@ -90,7 +96,9 @@ def pix2pix(
|
|
90 |
except:
|
91 |
raise gr.Error("Can't open input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).")
|
92 |
|
93 |
-
|
|
|
|
|
94 |
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "white")
|
95 |
|
96 |
limitation = "";
|
@@ -101,7 +109,7 @@ def pix2pix(
|
|
101 |
output_width = math.floor(output_width * factor)
|
102 |
output_height = math.floor(output_height * factor)
|
103 |
|
104 |
-
limitation = " Due to technical limitation, the image have been downscaled.";
|
105 |
|
106 |
# Width and height must be multiple of 8
|
107 |
output_width = output_width - (output_width % 8)
|
@@ -118,10 +126,14 @@ def pix2pix(
|
|
118 |
mask_image = mask_image,
|
119 |
num_inference_steps = num_inference_steps,
|
120 |
guidance_scale = guidance_scale,
|
|
|
121 |
denoising_steps = denoising_steps,
|
122 |
show_progress_bar = True
|
123 |
).images[0]
|
124 |
|
|
|
|
|
|
|
125 |
end = time.time()
|
126 |
secondes = int(end - start)
|
127 |
minutes = secondes // 60
|
@@ -164,8 +176,9 @@ with gr.Blocks() as interface:
|
|
164 |
with gr.Accordion("Advanced options", open = False):
|
165 |
negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the image', value = 'Watermark')
|
166 |
denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 0, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
|
167 |
-
num_inference_steps = gr.Slider(minimum = 10, maximum =
|
168 |
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 5, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
|
|
|
169 |
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different")
|
170 |
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
|
171 |
|
@@ -181,6 +194,7 @@ with gr.Blocks() as interface:
|
|
181 |
denoising_steps,
|
182 |
num_inference_steps,
|
183 |
guidance_scale,
|
|
|
184 |
randomize_seed,
|
185 |
seed
|
186 |
], outputs = [], queue = False, show_progress = False).success(pix2pix, inputs = [
|
@@ -190,6 +204,7 @@ with gr.Blocks() as interface:
|
|
190 |
denoising_steps,
|
191 |
num_inference_steps,
|
192 |
guidance_scale,
|
|
|
193 |
randomize_seed,
|
194 |
seed
|
195 |
], outputs = [
|
@@ -205,6 +220,7 @@ with gr.Blocks() as interface:
|
|
205 |
denoising_steps,
|
206 |
num_inference_steps,
|
207 |
guidance_scale,
|
|
|
208 |
randomize_seed,
|
209 |
seed
|
210 |
],
|
@@ -220,6 +236,7 @@ with gr.Blocks() as interface:
|
|
220 |
1,
|
221 |
20,
|
222 |
5,
|
|
|
223 |
True,
|
224 |
42
|
225 |
],
|
@@ -230,6 +247,7 @@ with gr.Blocks() as interface:
|
|
230 |
1,
|
231 |
20,
|
232 |
5,
|
|
|
233 |
True,
|
234 |
42
|
235 |
],
|
@@ -240,6 +258,7 @@ with gr.Blocks() as interface:
|
|
240 |
1,
|
241 |
20,
|
242 |
5,
|
|
|
243 |
True,
|
244 |
42
|
245 |
],
|
|
|
10 |
import math
|
11 |
import random
|
12 |
import imageio
|
13 |
+
from PIL import Image, ImageFilter
|
14 |
import torch
|
15 |
|
16 |
max_64_bit_int = 2**63 - 1
|
|
|
29 |
denoising_steps,
|
30 |
num_inference_steps,
|
31 |
guidance_scale,
|
32 |
+
image_guidance_scale,
|
33 |
randomize_seed,
|
34 |
seed,
|
35 |
progress = gr.Progress()):
|
|
|
46 |
denoising_steps,
|
47 |
num_inference_steps,
|
48 |
guidance_scale,
|
49 |
+
image_guidance_scale,
|
50 |
randomize_seed,
|
51 |
seed,
|
52 |
progress = gr.Progress()):
|
|
|
57 |
denoising_steps,
|
58 |
num_inference_steps,
|
59 |
guidance_scale,
|
60 |
+
image_guidance_scale,
|
61 |
randomize_seed,
|
62 |
seed
|
63 |
)
|
|
|
76 |
if guidance_scale is None:
|
77 |
guidance_scale = 5
|
78 |
|
79 |
+
if image_guidance_scale is None:
|
80 |
+
image_guidance_scale = 1.5
|
81 |
+
|
82 |
if randomize_seed:
|
83 |
seed = random.randint(0, max_64_bit_int)
|
84 |
|
|
|
96 |
except:
|
97 |
raise gr.Error("Can't open input image. You can try to first save your image in another format (.webp, .png, .jpeg, .bmp...).")
|
98 |
|
99 |
+
original_height, original_width, dummy_channel = np.array(input_image).shape
|
100 |
+
output_width = original_width
|
101 |
+
output_height = original_height
|
102 |
mask_image = Image.new(mode = input_image.mode, size = (output_width, output_height), color = "white")
|
103 |
|
104 |
limitation = "";
|
|
|
109 |
output_width = math.floor(output_width * factor)
|
110 |
output_height = math.floor(output_height * factor)
|
111 |
|
112 |
+
limitation = " Due to technical limitation, the image have been downscaled and then upscaled.";
|
113 |
|
114 |
# Width and height must be multiple of 8
|
115 |
output_width = output_width - (output_width % 8)
|
|
|
126 |
mask_image = mask_image,
|
127 |
num_inference_steps = num_inference_steps,
|
128 |
guidance_scale = guidance_scale,
|
129 |
+
image_guidance_scale = image_guidance_scale,
|
130 |
denoising_steps = denoising_steps,
|
131 |
show_progress_bar = True
|
132 |
).images[0]
|
133 |
|
134 |
+
if limitation != "":
|
135 |
+
output_image = output_image.resize((original_width, original_height))
|
136 |
+
|
137 |
end = time.time()
|
138 |
secondes = int(end - start)
|
139 |
minutes = secondes // 60
|
|
|
176 |
with gr.Accordion("Advanced options", open = False):
|
177 |
negative_prompt = gr.Textbox(label = 'Negative prompt', placeholder = 'Describe what you do NOT want to see in the image', value = 'Watermark')
|
178 |
denoising_steps = gr.Slider(minimum = 0, maximum = 1000, value = 0, step = 1, label = "Denoising", info = "lower=irrelevant result, higher=relevant result")
|
179 |
+
num_inference_steps = gr.Slider(minimum = 10, maximum = 500, value = 20, step = 1, label = "Number of inference steps", info = "lower=faster, higher=image quality")
|
180 |
guidance_scale = gr.Slider(minimum = 1, maximum = 13, value = 5, step = 0.1, label = "Classifier-Free Guidance Scale", info = "lower=image quality, higher=follow the prompt")
|
181 |
+
image_guidance_scale = gr.Slider(minimum = 1, value = 1.5, step = 0.1, label = "Image Guidance Scale", info = "lower=image quality, higher=follow the image")
|
182 |
randomize_seed = gr.Checkbox(label = "\U0001F3B2 Randomize seed (not working, always checked)", value = True, info = "If checked, result is always different")
|
183 |
seed = gr.Slider(minimum = 0, maximum = max_64_bit_int, step = 1, randomize = True, label = "Seed (if not randomized)")
|
184 |
|
|
|
194 |
denoising_steps,
|
195 |
num_inference_steps,
|
196 |
guidance_scale,
|
197 |
+
image_guidance_scale,
|
198 |
randomize_seed,
|
199 |
seed
|
200 |
], outputs = [], queue = False, show_progress = False).success(pix2pix, inputs = [
|
|
|
204 |
denoising_steps,
|
205 |
num_inference_steps,
|
206 |
guidance_scale,
|
207 |
+
image_guidance_scale,
|
208 |
randomize_seed,
|
209 |
seed
|
210 |
], outputs = [
|
|
|
220 |
denoising_steps,
|
221 |
num_inference_steps,
|
222 |
guidance_scale,
|
223 |
+
image_guidance_scale,
|
224 |
randomize_seed,
|
225 |
seed
|
226 |
],
|
|
|
236 |
1,
|
237 |
20,
|
238 |
5,
|
239 |
+
1.5,
|
240 |
True,
|
241 |
42
|
242 |
],
|
|
|
247 |
1,
|
248 |
20,
|
249 |
5,
|
250 |
+
1.5,
|
251 |
True,
|
252 |
42
|
253 |
],
|
|
|
258 |
1,
|
259 |
20,
|
260 |
5,
|
261 |
+
1.5,
|
262 |
True,
|
263 |
42
|
264 |
],
|