Spaces:
Runtime error
Runtime error
prateekiiest
commited on
Commit
•
025869f
1
Parent(s):
dd0c1d1
rgg
Browse files- app.py +109 -0
- ml-100k/ml-100k/README +157 -0
- ml-100k/ml-100k/allbut.pl +34 -0
- ml-100k/ml-100k/mku.sh +25 -0
- ml-100k/ml-100k/u.data +0 -0
- ml-100k/ml-100k/u.genre +20 -0
- ml-100k/ml-100k/u.info +3 -0
- ml-100k/ml-100k/u.item +0 -0
- ml-100k/ml-100k/u.occupation +21 -0
- ml-100k/ml-100k/u.user +943 -0
- ml-100k/ml-100k/u1.base +0 -0
- ml-100k/ml-100k/u1.test +0 -0
- ml-100k/ml-100k/u2.base +0 -0
- ml-100k/ml-100k/u2.test +0 -0
- ml-100k/ml-100k/u3.base +0 -0
- ml-100k/ml-100k/u3.test +0 -0
- ml-100k/ml-100k/u4.base +0 -0
- ml-100k/ml-100k/u4.test +0 -0
- ml-100k/ml-100k/u5.base +0 -0
- ml-100k/ml-100k/u5.test +0 -0
- ml-100k/ml-100k/ua.base +0 -0
- ml-100k/ml-100k/ua.test +0 -0
- ml-100k/ml-100k/ub.base +0 -0
- ml-100k/ml-100k/ub.test +0 -0
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import plotly.express as px
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import gradio as gr
|
6 |
+
from math import sqrt
|
7 |
+
import matplotlib
|
8 |
+
|
9 |
+
matplotlib.use("Agg")
|
10 |
+
|
11 |
+
|
12 |
+
genre_df = pd.read_csv(r"ml-100k\ml-100k\u.genre",
|
13 |
+
sep="|", names=["genreName", "count"])
|
14 |
+
|
15 |
+
|
16 |
+
user_df = pd.read_csv(r"ml-100k\ml-100k\u.user", sep="|",
|
17 |
+
names=["userID", "age", "gender", "occupation", "zip_code"])
|
18 |
+
movie_df = pd.read_csv(r"ml-100k\ml-100k\u.item", sep="|", names=["itemID", "title", "release_date", "video_release_date", "IMDb_URL", "unknown", "Action", "Adventure", "Animation", "Children's", "Comedy", "Crime", "Documentary", "Drama", "Fantasy", "Film-Noir", "Horror", "Musical", "Mystery", "Romance", "Sci-Fi", "Thriller", "War", "Western"],encoding='latin-1')
|
19 |
+
|
20 |
+
prediction_df = pd.read_csv(r"pred.csv", sep=",")
|
21 |
+
|
22 |
+
|
23 |
+
def mappingMovie(mid):
|
24 |
+
return movie_df.loc[movie_df["itemID"].values==mid]["title"].values[0]
|
25 |
+
|
26 |
+
prediction_df["Movie Title"] = prediction_df["itemID"].apply(mappingMovie)
|
27 |
+
|
28 |
+
|
29 |
+
df = pd.read_csv(r"ml-100k\ml-100k\u.data", sep="\t", names=["userID", "itemID", "rating", "timestamp"])
|
30 |
+
|
31 |
+
|
32 |
+
rating_df = df[df["rating"]>=1.0]
|
33 |
+
|
34 |
+
rating_df["Movie Title"] = rating_df["itemID"].apply(mappingMovie)
|
35 |
+
|
36 |
+
print(rating_df.head(7))
|
37 |
+
|
38 |
+
num_users = len(prediction_df["userID"].unique())
|
39 |
+
|
40 |
+
def get_top_rated_movies_from_user(id):
|
41 |
+
entire_df= rating_df[rating_df["userID"]==id].sort_values(by="rating", ascending=False).head(10)
|
42 |
+
return entire_df
|
43 |
+
def get_recommendations(id):
|
44 |
+
entire_df= prediction_df[prediction_df["userID"]==id].sort_values(by="prediction", ascending=False).head(10)
|
45 |
+
entire_df.drop(columns=["Unnamed: 0"], inplace=True)
|
46 |
+
return entire_df
|
47 |
+
|
48 |
+
def update_user(id):
|
49 |
+
return get_top_rated_movies_from_user(id), get_recommendations(id)
|
50 |
+
def random_user():
|
51 |
+
return update_user(np.random.randint(0, num_users-1))
|
52 |
+
|
53 |
+
demo = gr.Blocks()
|
54 |
+
|
55 |
+
with demo:
|
56 |
+
gr.Markdown("""
|
57 |
+
<div>
|
58 |
+
<h1 style='text-align: center'>Movie Recommender</h1>
|
59 |
+
Collaborative Filtering is used to predict the top 10 recommended movies for a particular user from the dataset based on that user and previous movies they have rated.
|
60 |
+
|
61 |
+
Note: Currently there is a bug with sliders. If you "click and drag" on the slider it will not use the correct user. Please only "click" on the slider :D.
|
62 |
+
</div>
|
63 |
+
""")
|
64 |
+
|
65 |
+
with gr.Box():
|
66 |
+
gr.Markdown(
|
67 |
+
"""
|
68 |
+
### Input
|
69 |
+
#### Select a user to get recommendations for.
|
70 |
+
""")
|
71 |
+
|
72 |
+
inp1 = gr.Slider(0, num_users-1, value=0, label='User')
|
73 |
+
# btn1 = gr.Button('Random User')
|
74 |
+
|
75 |
+
# top_rated_from_user = get_top_rated_from_user(0)
|
76 |
+
gr.Markdown(
|
77 |
+
"""
|
78 |
+
<br>
|
79 |
+
""")
|
80 |
+
gr.Markdown(
|
81 |
+
"""
|
82 |
+
#### Movies with the Highest Ratings from this user
|
83 |
+
""")
|
84 |
+
df1 = gr.DataFrame(headers=["title", "genres"], datatype=["str", "str"], interactive=False)
|
85 |
+
|
86 |
+
with gr.Box():
|
87 |
+
# recommendations = get_recommendations(0)
|
88 |
+
gr.Markdown(
|
89 |
+
"""
|
90 |
+
### Output
|
91 |
+
#### Top 10 movie recommendations
|
92 |
+
""")
|
93 |
+
df2 = gr.DataFrame(headers=["title", "genres"], datatype=["str", "str"], interactive=False)
|
94 |
+
|
95 |
+
gr.Markdown("""
|
96 |
+
<p style='text-align: center'>
|
97 |
+
<a href='https://keras.io/examples/structured_data/collaborative_filtering_movielens/' target='_blank' style='text-decoration: underline'></a>
|
98 |
+
<br>
|
99 |
+
Space by Scott Krstyen (mindwrapped)
|
100 |
+
</p>
|
101 |
+
""")
|
102 |
+
|
103 |
+
|
104 |
+
inp1.change(fn=update_user,
|
105 |
+
inputs=inp1,
|
106 |
+
outputs=[df1, df2])
|
107 |
+
|
108 |
+
|
109 |
+
demo.launch(debug=True)
|
ml-100k/ml-100k/README
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SUMMARY & USAGE LICENSE
|
2 |
+
=============================================
|
3 |
+
|
4 |
+
MovieLens data sets were collected by the GroupLens Research Project
|
5 |
+
at the University of Minnesota.
|
6 |
+
|
7 |
+
This data set consists of:
|
8 |
+
* 100,000 ratings (1-5) from 943 users on 1682 movies.
|
9 |
+
* Each user has rated at least 20 movies.
|
10 |
+
* Simple demographic info for the users (age, gender, occupation, zip)
|
11 |
+
|
12 |
+
The data was collected through the MovieLens web site
|
13 |
+
(movielens.umn.edu) during the seven-month period from September 19th,
|
14 |
+
1997 through April 22nd, 1998. This data has been cleaned up - users
|
15 |
+
who had less than 20 ratings or did not have complete demographic
|
16 |
+
information were removed from this data set. Detailed descriptions of
|
17 |
+
the data file can be found at the end of this file.
|
18 |
+
|
19 |
+
Neither the University of Minnesota nor any of the researchers
|
20 |
+
involved can guarantee the correctness of the data, its suitability
|
21 |
+
for any particular purpose, or the validity of results based on the
|
22 |
+
use of the data set. The data set may be used for any research
|
23 |
+
purposes under the following conditions:
|
24 |
+
|
25 |
+
* The user may not state or imply any endorsement from the
|
26 |
+
University of Minnesota or the GroupLens Research Group.
|
27 |
+
|
28 |
+
* The user must acknowledge the use of the data set in
|
29 |
+
publications resulting from the use of the data set
|
30 |
+
(see below for citation information).
|
31 |
+
|
32 |
+
* The user may not redistribute the data without separate
|
33 |
+
permission.
|
34 |
+
|
35 |
+
* The user may not use this information for any commercial or
|
36 |
+
revenue-bearing purposes without first obtaining permission
|
37 |
+
from a faculty member of the GroupLens Research Project at the
|
38 |
+
University of Minnesota.
|
39 |
+
|
40 |
+
If you have any further questions or comments, please contact GroupLens
|
41 |
+
<grouplens-info@cs.umn.edu>.
|
42 |
+
|
43 |
+
CITATION
|
44 |
+
==============================================
|
45 |
+
|
46 |
+
To acknowledge use of the dataset in publications, please cite the
|
47 |
+
following paper:
|
48 |
+
|
49 |
+
F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets:
|
50 |
+
History and Context. ACM Transactions on Interactive Intelligent
|
51 |
+
Systems (TiiS) 5, 4, Article 19 (December 2015), 19 pages.
|
52 |
+
DOI=http://dx.doi.org/10.1145/2827872
|
53 |
+
|
54 |
+
|
55 |
+
ACKNOWLEDGEMENTS
|
56 |
+
==============================================
|
57 |
+
|
58 |
+
Thanks to Al Borchers for cleaning up this data and writing the
|
59 |
+
accompanying scripts.
|
60 |
+
|
61 |
+
PUBLISHED WORK THAT HAS USED THIS DATASET
|
62 |
+
==============================================
|
63 |
+
|
64 |
+
Herlocker, J., Konstan, J., Borchers, A., Riedl, J.. An Algorithmic
|
65 |
+
Framework for Performing Collaborative Filtering. Proceedings of the
|
66 |
+
1999 Conference on Research and Development in Information
|
67 |
+
Retrieval. Aug. 1999.
|
68 |
+
|
69 |
+
FURTHER INFORMATION ABOUT THE GROUPLENS RESEARCH PROJECT
|
70 |
+
==============================================
|
71 |
+
|
72 |
+
The GroupLens Research Project is a research group in the Department
|
73 |
+
of Computer Science and Engineering at the University of Minnesota.
|
74 |
+
Members of the GroupLens Research Project are involved in many
|
75 |
+
research projects related to the fields of information filtering,
|
76 |
+
collaborative filtering, and recommender systems. The project is lead
|
77 |
+
by professors John Riedl and Joseph Konstan. The project began to
|
78 |
+
explore automated collaborative filtering in 1992, but is most well
|
79 |
+
known for its world wide trial of an automated collaborative filtering
|
80 |
+
system for Usenet news in 1996. The technology developed in the
|
81 |
+
Usenet trial formed the base for the formation of Net Perceptions,
|
82 |
+
Inc., which was founded by members of GroupLens Research. Since then
|
83 |
+
the project has expanded its scope to research overall information
|
84 |
+
filtering solutions, integrating in content-based methods as well as
|
85 |
+
improving current collaborative filtering technology.
|
86 |
+
|
87 |
+
Further information on the GroupLens Research project, including
|
88 |
+
research publications, can be found at the following web site:
|
89 |
+
|
90 |
+
http://www.grouplens.org/
|
91 |
+
|
92 |
+
GroupLens Research currently operates a movie recommender based on
|
93 |
+
collaborative filtering:
|
94 |
+
|
95 |
+
http://www.movielens.org/
|
96 |
+
|
97 |
+
DETAILED DESCRIPTIONS OF DATA FILES
|
98 |
+
==============================================
|
99 |
+
|
100 |
+
Here are brief descriptions of the data.
|
101 |
+
|
102 |
+
ml-data.tar.gz -- Compressed tar file. To rebuild the u data files do this:
|
103 |
+
gunzip ml-data.tar.gz
|
104 |
+
tar xvf ml-data.tar
|
105 |
+
mku.sh
|
106 |
+
|
107 |
+
u.data -- The full u data set, 100000 ratings by 943 users on 1682 items.
|
108 |
+
Each user has rated at least 20 movies. Users and items are
|
109 |
+
numbered consecutively from 1. The data is randomly
|
110 |
+
ordered. This is a tab separated list of
|
111 |
+
user id | item id | rating | timestamp.
|
112 |
+
The time stamps are unix seconds since 1/1/1970 UTC
|
113 |
+
|
114 |
+
u.info -- The number of users, items, and ratings in the u data set.
|
115 |
+
|
116 |
+
u.item -- Information about the items (movies); this is a tab separated
|
117 |
+
list of
|
118 |
+
movie id | movie title | release date | video release date |
|
119 |
+
IMDb URL | unknown | Action | Adventure | Animation |
|
120 |
+
Children's | Comedy | Crime | Documentary | Drama | Fantasy |
|
121 |
+
Film-Noir | Horror | Musical | Mystery | Romance | Sci-Fi |
|
122 |
+
Thriller | War | Western |
|
123 |
+
The last 19 fields are the genres, a 1 indicates the movie
|
124 |
+
is of that genre, a 0 indicates it is not; movies can be in
|
125 |
+
several genres at once.
|
126 |
+
The movie ids are the ones used in the u.data data set.
|
127 |
+
|
128 |
+
u.genre -- A list of the genres.
|
129 |
+
|
130 |
+
u.user -- Demographic information about the users; this is a tab
|
131 |
+
separated list of
|
132 |
+
user id | age | gender | occupation | zip code
|
133 |
+
The user ids are the ones used in the u.data data set.
|
134 |
+
|
135 |
+
u.occupation -- A list of the occupations.
|
136 |
+
|
137 |
+
u1.base -- The data sets u1.base and u1.test through u5.base and u5.test
|
138 |
+
u1.test are 80%/20% splits of the u data into training and test data.
|
139 |
+
u2.base Each of u1, ..., u5 have disjoint test sets; this if for
|
140 |
+
u2.test 5 fold cross validation (where you repeat your experiment
|
141 |
+
u3.base with each training and test set and average the results).
|
142 |
+
u3.test These data sets can be generated from u.data by mku.sh.
|
143 |
+
u4.base
|
144 |
+
u4.test
|
145 |
+
u5.base
|
146 |
+
u5.test
|
147 |
+
|
148 |
+
ua.base -- The data sets ua.base, ua.test, ub.base, and ub.test
|
149 |
+
ua.test split the u data into a training set and a test set with
|
150 |
+
ub.base exactly 10 ratings per user in the test set. The sets
|
151 |
+
ub.test ua.test and ub.test are disjoint. These data sets can
|
152 |
+
be generated from u.data by mku.sh.
|
153 |
+
|
154 |
+
allbut.pl -- The script that generates training and test sets where
|
155 |
+
all but n of a users ratings are in the training data.
|
156 |
+
|
157 |
+
mku.sh -- A shell script to generate all the u data sets from u.data.
|
ml-100k/ml-100k/allbut.pl
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/local/bin/perl
|
2 |
+
|
3 |
+
# get args
|
4 |
+
if (@ARGV < 3) {
|
5 |
+
print STDERR "Usage: $0 base_name start stop max_test [ratings ...]\n";
|
6 |
+
exit 1;
|
7 |
+
}
|
8 |
+
$basename = shift;
|
9 |
+
$start = shift;
|
10 |
+
$stop = shift;
|
11 |
+
$maxtest = shift;
|
12 |
+
|
13 |
+
# open files
|
14 |
+
open( TESTFILE, ">$basename.test" ) or die "Cannot open $basename.test for writing\n";
|
15 |
+
open( BASEFILE, ">$basename.base" ) or die "Cannot open $basename.base for writing\n";
|
16 |
+
|
17 |
+
# init variables
|
18 |
+
$testcnt = 0;
|
19 |
+
|
20 |
+
while (<>) {
|
21 |
+
($user) = split;
|
22 |
+
if (! defined $ratingcnt{$user}) {
|
23 |
+
$ratingcnt{$user} = 0;
|
24 |
+
}
|
25 |
+
++$ratingcnt{$user};
|
26 |
+
if (($testcnt < $maxtest || $maxtest <= 0)
|
27 |
+
&& $ratingcnt{$user} >= $start && $ratingcnt{$user} <= $stop) {
|
28 |
+
++$testcnt;
|
29 |
+
print TESTFILE;
|
30 |
+
}
|
31 |
+
else {
|
32 |
+
print BASEFILE;
|
33 |
+
}
|
34 |
+
}
|
ml-100k/ml-100k/mku.sh
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
|
3 |
+
trap `rm -f tmp.$$; exit 1` 1 2 15
|
4 |
+
|
5 |
+
for i in 1 2 3 4 5
|
6 |
+
do
|
7 |
+
head -`expr $i \* 20000` u.data | tail -20000 > tmp.$$
|
8 |
+
sort -t" " -k 1,1n -k 2,2n tmp.$$ > u$i.test
|
9 |
+
head -`expr \( $i - 1 \) \* 20000` u.data > tmp.$$
|
10 |
+
tail -`expr \( 5 - $i \) \* 20000` u.data >> tmp.$$
|
11 |
+
sort -t" " -k 1,1n -k 2,2n tmp.$$ > u$i.base
|
12 |
+
done
|
13 |
+
|
14 |
+
allbut.pl ua 1 10 100000 u.data
|
15 |
+
sort -t" " -k 1,1n -k 2,2n ua.base > tmp.$$
|
16 |
+
mv tmp.$$ ua.base
|
17 |
+
sort -t" " -k 1,1n -k 2,2n ua.test > tmp.$$
|
18 |
+
mv tmp.$$ ua.test
|
19 |
+
|
20 |
+
allbut.pl ub 11 20 100000 u.data
|
21 |
+
sort -t" " -k 1,1n -k 2,2n ub.base > tmp.$$
|
22 |
+
mv tmp.$$ ub.base
|
23 |
+
sort -t" " -k 1,1n -k 2,2n ub.test > tmp.$$
|
24 |
+
mv tmp.$$ ub.test
|
25 |
+
|
ml-100k/ml-100k/u.data
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/u.genre
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
unknown|0
|
2 |
+
Action|1
|
3 |
+
Adventure|2
|
4 |
+
Animation|3
|
5 |
+
Children's|4
|
6 |
+
Comedy|5
|
7 |
+
Crime|6
|
8 |
+
Documentary|7
|
9 |
+
Drama|8
|
10 |
+
Fantasy|9
|
11 |
+
Film-Noir|10
|
12 |
+
Horror|11
|
13 |
+
Musical|12
|
14 |
+
Mystery|13
|
15 |
+
Romance|14
|
16 |
+
Sci-Fi|15
|
17 |
+
Thriller|16
|
18 |
+
War|17
|
19 |
+
Western|18
|
20 |
+
|
ml-100k/ml-100k/u.info
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
943 users
|
2 |
+
1682 items
|
3 |
+
100000 ratings
|
ml-100k/ml-100k/u.item
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/u.occupation
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
administrator
|
2 |
+
artist
|
3 |
+
doctor
|
4 |
+
educator
|
5 |
+
engineer
|
6 |
+
entertainment
|
7 |
+
executive
|
8 |
+
healthcare
|
9 |
+
homemaker
|
10 |
+
lawyer
|
11 |
+
librarian
|
12 |
+
marketing
|
13 |
+
none
|
14 |
+
other
|
15 |
+
programmer
|
16 |
+
retired
|
17 |
+
salesman
|
18 |
+
scientist
|
19 |
+
student
|
20 |
+
technician
|
21 |
+
writer
|
ml-100k/ml-100k/u.user
ADDED
@@ -0,0 +1,943 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1|24|M|technician|85711
|
2 |
+
2|53|F|other|94043
|
3 |
+
3|23|M|writer|32067
|
4 |
+
4|24|M|technician|43537
|
5 |
+
5|33|F|other|15213
|
6 |
+
6|42|M|executive|98101
|
7 |
+
7|57|M|administrator|91344
|
8 |
+
8|36|M|administrator|05201
|
9 |
+
9|29|M|student|01002
|
10 |
+
10|53|M|lawyer|90703
|
11 |
+
11|39|F|other|30329
|
12 |
+
12|28|F|other|06405
|
13 |
+
13|47|M|educator|29206
|
14 |
+
14|45|M|scientist|55106
|
15 |
+
15|49|F|educator|97301
|
16 |
+
16|21|M|entertainment|10309
|
17 |
+
17|30|M|programmer|06355
|
18 |
+
18|35|F|other|37212
|
19 |
+
19|40|M|librarian|02138
|
20 |
+
20|42|F|homemaker|95660
|
21 |
+
21|26|M|writer|30068
|
22 |
+
22|25|M|writer|40206
|
23 |
+
23|30|F|artist|48197
|
24 |
+
24|21|F|artist|94533
|
25 |
+
25|39|M|engineer|55107
|
26 |
+
26|49|M|engineer|21044
|
27 |
+
27|40|F|librarian|30030
|
28 |
+
28|32|M|writer|55369
|
29 |
+
29|41|M|programmer|94043
|
30 |
+
30|7|M|student|55436
|
31 |
+
31|24|M|artist|10003
|
32 |
+
32|28|F|student|78741
|
33 |
+
33|23|M|student|27510
|
34 |
+
34|38|F|administrator|42141
|
35 |
+
35|20|F|homemaker|42459
|
36 |
+
36|19|F|student|93117
|
37 |
+
37|23|M|student|55105
|
38 |
+
38|28|F|other|54467
|
39 |
+
39|41|M|entertainment|01040
|
40 |
+
40|38|M|scientist|27514
|
41 |
+
41|33|M|engineer|80525
|
42 |
+
42|30|M|administrator|17870
|
43 |
+
43|29|F|librarian|20854
|
44 |
+
44|26|M|technician|46260
|
45 |
+
45|29|M|programmer|50233
|
46 |
+
46|27|F|marketing|46538
|
47 |
+
47|53|M|marketing|07102
|
48 |
+
48|45|M|administrator|12550
|
49 |
+
49|23|F|student|76111
|
50 |
+
50|21|M|writer|52245
|
51 |
+
51|28|M|educator|16509
|
52 |
+
52|18|F|student|55105
|
53 |
+
53|26|M|programmer|55414
|
54 |
+
54|22|M|executive|66315
|
55 |
+
55|37|M|programmer|01331
|
56 |
+
56|25|M|librarian|46260
|
57 |
+
57|16|M|none|84010
|
58 |
+
58|27|M|programmer|52246
|
59 |
+
59|49|M|educator|08403
|
60 |
+
60|50|M|healthcare|06472
|
61 |
+
61|36|M|engineer|30040
|
62 |
+
62|27|F|administrator|97214
|
63 |
+
63|31|M|marketing|75240
|
64 |
+
64|32|M|educator|43202
|
65 |
+
65|51|F|educator|48118
|
66 |
+
66|23|M|student|80521
|
67 |
+
67|17|M|student|60402
|
68 |
+
68|19|M|student|22904
|
69 |
+
69|24|M|engineer|55337
|
70 |
+
70|27|M|engineer|60067
|
71 |
+
71|39|M|scientist|98034
|
72 |
+
72|48|F|administrator|73034
|
73 |
+
73|24|M|student|41850
|
74 |
+
74|39|M|scientist|T8H1N
|
75 |
+
75|24|M|entertainment|08816
|
76 |
+
76|20|M|student|02215
|
77 |
+
77|30|M|technician|29379
|
78 |
+
78|26|M|administrator|61801
|
79 |
+
79|39|F|administrator|03755
|
80 |
+
80|34|F|administrator|52241
|
81 |
+
81|21|M|student|21218
|
82 |
+
82|50|M|programmer|22902
|
83 |
+
83|40|M|other|44133
|
84 |
+
84|32|M|executive|55369
|
85 |
+
85|51|M|educator|20003
|
86 |
+
86|26|M|administrator|46005
|
87 |
+
87|47|M|administrator|89503
|
88 |
+
88|49|F|librarian|11701
|
89 |
+
89|43|F|administrator|68106
|
90 |
+
90|60|M|educator|78155
|
91 |
+
91|55|M|marketing|01913
|
92 |
+
92|32|M|entertainment|80525
|
93 |
+
93|48|M|executive|23112
|
94 |
+
94|26|M|student|71457
|
95 |
+
95|31|M|administrator|10707
|
96 |
+
96|25|F|artist|75206
|
97 |
+
97|43|M|artist|98006
|
98 |
+
98|49|F|executive|90291
|
99 |
+
99|20|M|student|63129
|
100 |
+
100|36|M|executive|90254
|
101 |
+
101|15|M|student|05146
|
102 |
+
102|38|M|programmer|30220
|
103 |
+
103|26|M|student|55108
|
104 |
+
104|27|M|student|55108
|
105 |
+
105|24|M|engineer|94043
|
106 |
+
106|61|M|retired|55125
|
107 |
+
107|39|M|scientist|60466
|
108 |
+
108|44|M|educator|63130
|
109 |
+
109|29|M|other|55423
|
110 |
+
110|19|M|student|77840
|
111 |
+
111|57|M|engineer|90630
|
112 |
+
112|30|M|salesman|60613
|
113 |
+
113|47|M|executive|95032
|
114 |
+
114|27|M|programmer|75013
|
115 |
+
115|31|M|engineer|17110
|
116 |
+
116|40|M|healthcare|97232
|
117 |
+
117|20|M|student|16125
|
118 |
+
118|21|M|administrator|90210
|
119 |
+
119|32|M|programmer|67401
|
120 |
+
120|47|F|other|06260
|
121 |
+
121|54|M|librarian|99603
|
122 |
+
122|32|F|writer|22206
|
123 |
+
123|48|F|artist|20008
|
124 |
+
124|34|M|student|60615
|
125 |
+
125|30|M|lawyer|22202
|
126 |
+
126|28|F|lawyer|20015
|
127 |
+
127|33|M|none|73439
|
128 |
+
128|24|F|marketing|20009
|
129 |
+
129|36|F|marketing|07039
|
130 |
+
130|20|M|none|60115
|
131 |
+
131|59|F|administrator|15237
|
132 |
+
132|24|M|other|94612
|
133 |
+
133|53|M|engineer|78602
|
134 |
+
134|31|M|programmer|80236
|
135 |
+
135|23|M|student|38401
|
136 |
+
136|51|M|other|97365
|
137 |
+
137|50|M|educator|84408
|
138 |
+
138|46|M|doctor|53211
|
139 |
+
139|20|M|student|08904
|
140 |
+
140|30|F|student|32250
|
141 |
+
141|49|M|programmer|36117
|
142 |
+
142|13|M|other|48118
|
143 |
+
143|42|M|technician|08832
|
144 |
+
144|53|M|programmer|20910
|
145 |
+
145|31|M|entertainment|V3N4P
|
146 |
+
146|45|M|artist|83814
|
147 |
+
147|40|F|librarian|02143
|
148 |
+
148|33|M|engineer|97006
|
149 |
+
149|35|F|marketing|17325
|
150 |
+
150|20|F|artist|02139
|
151 |
+
151|38|F|administrator|48103
|
152 |
+
152|33|F|educator|68767
|
153 |
+
153|25|M|student|60641
|
154 |
+
154|25|M|student|53703
|
155 |
+
155|32|F|other|11217
|
156 |
+
156|25|M|educator|08360
|
157 |
+
157|57|M|engineer|70808
|
158 |
+
158|50|M|educator|27606
|
159 |
+
159|23|F|student|55346
|
160 |
+
160|27|M|programmer|66215
|
161 |
+
161|50|M|lawyer|55104
|
162 |
+
162|25|M|artist|15610
|
163 |
+
163|49|M|administrator|97212
|
164 |
+
164|47|M|healthcare|80123
|
165 |
+
165|20|F|other|53715
|
166 |
+
166|47|M|educator|55113
|
167 |
+
167|37|M|other|L9G2B
|
168 |
+
168|48|M|other|80127
|
169 |
+
169|52|F|other|53705
|
170 |
+
170|53|F|healthcare|30067
|
171 |
+
171|48|F|educator|78750
|
172 |
+
172|55|M|marketing|22207
|
173 |
+
173|56|M|other|22306
|
174 |
+
174|30|F|administrator|52302
|
175 |
+
175|26|F|scientist|21911
|
176 |
+
176|28|M|scientist|07030
|
177 |
+
177|20|M|programmer|19104
|
178 |
+
178|26|M|other|49512
|
179 |
+
179|15|M|entertainment|20755
|
180 |
+
180|22|F|administrator|60202
|
181 |
+
181|26|M|executive|21218
|
182 |
+
182|36|M|programmer|33884
|
183 |
+
183|33|M|scientist|27708
|
184 |
+
184|37|M|librarian|76013
|
185 |
+
185|53|F|librarian|97403
|
186 |
+
186|39|F|executive|00000
|
187 |
+
187|26|M|educator|16801
|
188 |
+
188|42|M|student|29440
|
189 |
+
189|32|M|artist|95014
|
190 |
+
190|30|M|administrator|95938
|
191 |
+
191|33|M|administrator|95161
|
192 |
+
192|42|M|educator|90840
|
193 |
+
193|29|M|student|49931
|
194 |
+
194|38|M|administrator|02154
|
195 |
+
195|42|M|scientist|93555
|
196 |
+
196|49|M|writer|55105
|
197 |
+
197|55|M|technician|75094
|
198 |
+
198|21|F|student|55414
|
199 |
+
199|30|M|writer|17604
|
200 |
+
200|40|M|programmer|93402
|
201 |
+
201|27|M|writer|E2A4H
|
202 |
+
202|41|F|educator|60201
|
203 |
+
203|25|F|student|32301
|
204 |
+
204|52|F|librarian|10960
|
205 |
+
205|47|M|lawyer|06371
|
206 |
+
206|14|F|student|53115
|
207 |
+
207|39|M|marketing|92037
|
208 |
+
208|43|M|engineer|01720
|
209 |
+
209|33|F|educator|85710
|
210 |
+
210|39|M|engineer|03060
|
211 |
+
211|66|M|salesman|32605
|
212 |
+
212|49|F|educator|61401
|
213 |
+
213|33|M|executive|55345
|
214 |
+
214|26|F|librarian|11231
|
215 |
+
215|35|M|programmer|63033
|
216 |
+
216|22|M|engineer|02215
|
217 |
+
217|22|M|other|11727
|
218 |
+
218|37|M|administrator|06513
|
219 |
+
219|32|M|programmer|43212
|
220 |
+
220|30|M|librarian|78205
|
221 |
+
221|19|M|student|20685
|
222 |
+
222|29|M|programmer|27502
|
223 |
+
223|19|F|student|47906
|
224 |
+
224|31|F|educator|43512
|
225 |
+
225|51|F|administrator|58202
|
226 |
+
226|28|M|student|92103
|
227 |
+
227|46|M|executive|60659
|
228 |
+
228|21|F|student|22003
|
229 |
+
229|29|F|librarian|22903
|
230 |
+
230|28|F|student|14476
|
231 |
+
231|48|M|librarian|01080
|
232 |
+
232|45|M|scientist|99709
|
233 |
+
233|38|M|engineer|98682
|
234 |
+
234|60|M|retired|94702
|
235 |
+
235|37|M|educator|22973
|
236 |
+
236|44|F|writer|53214
|
237 |
+
237|49|M|administrator|63146
|
238 |
+
238|42|F|administrator|44124
|
239 |
+
239|39|M|artist|95628
|
240 |
+
240|23|F|educator|20784
|
241 |
+
241|26|F|student|20001
|
242 |
+
242|33|M|educator|31404
|
243 |
+
243|33|M|educator|60201
|
244 |
+
244|28|M|technician|80525
|
245 |
+
245|22|M|student|55109
|
246 |
+
246|19|M|student|28734
|
247 |
+
247|28|M|engineer|20770
|
248 |
+
248|25|M|student|37235
|
249 |
+
249|25|M|student|84103
|
250 |
+
250|29|M|executive|95110
|
251 |
+
251|28|M|doctor|85032
|
252 |
+
252|42|M|engineer|07733
|
253 |
+
253|26|F|librarian|22903
|
254 |
+
254|44|M|educator|42647
|
255 |
+
255|23|M|entertainment|07029
|
256 |
+
256|35|F|none|39042
|
257 |
+
257|17|M|student|77005
|
258 |
+
258|19|F|student|77801
|
259 |
+
259|21|M|student|48823
|
260 |
+
260|40|F|artist|89801
|
261 |
+
261|28|M|administrator|85202
|
262 |
+
262|19|F|student|78264
|
263 |
+
263|41|M|programmer|55346
|
264 |
+
264|36|F|writer|90064
|
265 |
+
265|26|M|executive|84601
|
266 |
+
266|62|F|administrator|78756
|
267 |
+
267|23|M|engineer|83716
|
268 |
+
268|24|M|engineer|19422
|
269 |
+
269|31|F|librarian|43201
|
270 |
+
270|18|F|student|63119
|
271 |
+
271|51|M|engineer|22932
|
272 |
+
272|33|M|scientist|53706
|
273 |
+
273|50|F|other|10016
|
274 |
+
274|20|F|student|55414
|
275 |
+
275|38|M|engineer|92064
|
276 |
+
276|21|M|student|95064
|
277 |
+
277|35|F|administrator|55406
|
278 |
+
278|37|F|librarian|30033
|
279 |
+
279|33|M|programmer|85251
|
280 |
+
280|30|F|librarian|22903
|
281 |
+
281|15|F|student|06059
|
282 |
+
282|22|M|administrator|20057
|
283 |
+
283|28|M|programmer|55305
|
284 |
+
284|40|M|executive|92629
|
285 |
+
285|25|M|programmer|53713
|
286 |
+
286|27|M|student|15217
|
287 |
+
287|21|M|salesman|31211
|
288 |
+
288|34|M|marketing|23226
|
289 |
+
289|11|M|none|94619
|
290 |
+
290|40|M|engineer|93550
|
291 |
+
291|19|M|student|44106
|
292 |
+
292|35|F|programmer|94703
|
293 |
+
293|24|M|writer|60804
|
294 |
+
294|34|M|technician|92110
|
295 |
+
295|31|M|educator|50325
|
296 |
+
296|43|F|administrator|16803
|
297 |
+
297|29|F|educator|98103
|
298 |
+
298|44|M|executive|01581
|
299 |
+
299|29|M|doctor|63108
|
300 |
+
300|26|F|programmer|55106
|
301 |
+
301|24|M|student|55439
|
302 |
+
302|42|M|educator|77904
|
303 |
+
303|19|M|student|14853
|
304 |
+
304|22|F|student|71701
|
305 |
+
305|23|M|programmer|94086
|
306 |
+
306|45|M|other|73132
|
307 |
+
307|25|M|student|55454
|
308 |
+
308|60|M|retired|95076
|
309 |
+
309|40|M|scientist|70802
|
310 |
+
310|37|M|educator|91711
|
311 |
+
311|32|M|technician|73071
|
312 |
+
312|48|M|other|02110
|
313 |
+
313|41|M|marketing|60035
|
314 |
+
314|20|F|student|08043
|
315 |
+
315|31|M|educator|18301
|
316 |
+
316|43|F|other|77009
|
317 |
+
317|22|M|administrator|13210
|
318 |
+
318|65|M|retired|06518
|
319 |
+
319|38|M|programmer|22030
|
320 |
+
320|19|M|student|24060
|
321 |
+
321|49|F|educator|55413
|
322 |
+
322|20|M|student|50613
|
323 |
+
323|21|M|student|19149
|
324 |
+
324|21|F|student|02176
|
325 |
+
325|48|M|technician|02139
|
326 |
+
326|41|M|administrator|15235
|
327 |
+
327|22|M|student|11101
|
328 |
+
328|51|M|administrator|06779
|
329 |
+
329|48|M|educator|01720
|
330 |
+
330|35|F|educator|33884
|
331 |
+
331|33|M|entertainment|91344
|
332 |
+
332|20|M|student|40504
|
333 |
+
333|47|M|other|V0R2M
|
334 |
+
334|32|M|librarian|30002
|
335 |
+
335|45|M|executive|33775
|
336 |
+
336|23|M|salesman|42101
|
337 |
+
337|37|M|scientist|10522
|
338 |
+
338|39|F|librarian|59717
|
339 |
+
339|35|M|lawyer|37901
|
340 |
+
340|46|M|engineer|80123
|
341 |
+
341|17|F|student|44405
|
342 |
+
342|25|F|other|98006
|
343 |
+
343|43|M|engineer|30093
|
344 |
+
344|30|F|librarian|94117
|
345 |
+
345|28|F|librarian|94143
|
346 |
+
346|34|M|other|76059
|
347 |
+
347|18|M|student|90210
|
348 |
+
348|24|F|student|45660
|
349 |
+
349|68|M|retired|61455
|
350 |
+
350|32|M|student|97301
|
351 |
+
351|61|M|educator|49938
|
352 |
+
352|37|F|programmer|55105
|
353 |
+
353|25|M|scientist|28480
|
354 |
+
354|29|F|librarian|48197
|
355 |
+
355|25|M|student|60135
|
356 |
+
356|32|F|homemaker|92688
|
357 |
+
357|26|M|executive|98133
|
358 |
+
358|40|M|educator|10022
|
359 |
+
359|22|M|student|61801
|
360 |
+
360|51|M|other|98027
|
361 |
+
361|22|M|student|44074
|
362 |
+
362|35|F|homemaker|85233
|
363 |
+
363|20|M|student|87501
|
364 |
+
364|63|M|engineer|01810
|
365 |
+
365|29|M|lawyer|20009
|
366 |
+
366|20|F|student|50670
|
367 |
+
367|17|M|student|37411
|
368 |
+
368|18|M|student|92113
|
369 |
+
369|24|M|student|91335
|
370 |
+
370|52|M|writer|08534
|
371 |
+
371|36|M|engineer|99206
|
372 |
+
372|25|F|student|66046
|
373 |
+
373|24|F|other|55116
|
374 |
+
374|36|M|executive|78746
|
375 |
+
375|17|M|entertainment|37777
|
376 |
+
376|28|F|other|10010
|
377 |
+
377|22|M|student|18015
|
378 |
+
378|35|M|student|02859
|
379 |
+
379|44|M|programmer|98117
|
380 |
+
380|32|M|engineer|55117
|
381 |
+
381|33|M|artist|94608
|
382 |
+
382|45|M|engineer|01824
|
383 |
+
383|42|M|administrator|75204
|
384 |
+
384|52|M|programmer|45218
|
385 |
+
385|36|M|writer|10003
|
386 |
+
386|36|M|salesman|43221
|
387 |
+
387|33|M|entertainment|37412
|
388 |
+
388|31|M|other|36106
|
389 |
+
389|44|F|writer|83702
|
390 |
+
390|42|F|writer|85016
|
391 |
+
391|23|M|student|84604
|
392 |
+
392|52|M|writer|59801
|
393 |
+
393|19|M|student|83686
|
394 |
+
394|25|M|administrator|96819
|
395 |
+
395|43|M|other|44092
|
396 |
+
396|57|M|engineer|94551
|
397 |
+
397|17|M|student|27514
|
398 |
+
398|40|M|other|60008
|
399 |
+
399|25|M|other|92374
|
400 |
+
400|33|F|administrator|78213
|
401 |
+
401|46|F|healthcare|84107
|
402 |
+
402|30|M|engineer|95129
|
403 |
+
403|37|M|other|06811
|
404 |
+
404|29|F|programmer|55108
|
405 |
+
405|22|F|healthcare|10019
|
406 |
+
406|52|M|educator|93109
|
407 |
+
407|29|M|engineer|03261
|
408 |
+
408|23|M|student|61755
|
409 |
+
409|48|M|administrator|98225
|
410 |
+
410|30|F|artist|94025
|
411 |
+
411|34|M|educator|44691
|
412 |
+
412|25|M|educator|15222
|
413 |
+
413|55|M|educator|78212
|
414 |
+
414|24|M|programmer|38115
|
415 |
+
415|39|M|educator|85711
|
416 |
+
416|20|F|student|92626
|
417 |
+
417|27|F|other|48103
|
418 |
+
418|55|F|none|21206
|
419 |
+
419|37|M|lawyer|43215
|
420 |
+
420|53|M|educator|02140
|
421 |
+
421|38|F|programmer|55105
|
422 |
+
422|26|M|entertainment|94533
|
423 |
+
423|64|M|other|91606
|
424 |
+
424|36|F|marketing|55422
|
425 |
+
425|19|M|student|58644
|
426 |
+
426|55|M|educator|01602
|
427 |
+
427|51|M|doctor|85258
|
428 |
+
428|28|M|student|55414
|
429 |
+
429|27|M|student|29205
|
430 |
+
430|38|M|scientist|98199
|
431 |
+
431|24|M|marketing|92629
|
432 |
+
432|22|M|entertainment|50311
|
433 |
+
433|27|M|artist|11211
|
434 |
+
434|16|F|student|49705
|
435 |
+
435|24|M|engineer|60007
|
436 |
+
436|30|F|administrator|17345
|
437 |
+
437|27|F|other|20009
|
438 |
+
438|51|F|administrator|43204
|
439 |
+
439|23|F|administrator|20817
|
440 |
+
440|30|M|other|48076
|
441 |
+
441|50|M|technician|55013
|
442 |
+
442|22|M|student|85282
|
443 |
+
443|35|M|salesman|33308
|
444 |
+
444|51|F|lawyer|53202
|
445 |
+
445|21|M|writer|92653
|
446 |
+
446|57|M|educator|60201
|
447 |
+
447|30|M|administrator|55113
|
448 |
+
448|23|M|entertainment|10021
|
449 |
+
449|23|M|librarian|55021
|
450 |
+
450|35|F|educator|11758
|
451 |
+
451|16|M|student|48446
|
452 |
+
452|35|M|administrator|28018
|
453 |
+
453|18|M|student|06333
|
454 |
+
454|57|M|other|97330
|
455 |
+
455|48|M|administrator|83709
|
456 |
+
456|24|M|technician|31820
|
457 |
+
457|33|F|salesman|30011
|
458 |
+
458|47|M|technician|Y1A6B
|
459 |
+
459|22|M|student|29201
|
460 |
+
460|44|F|other|60630
|
461 |
+
461|15|M|student|98102
|
462 |
+
462|19|F|student|02918
|
463 |
+
463|48|F|healthcare|75218
|
464 |
+
464|60|M|writer|94583
|
465 |
+
465|32|M|other|05001
|
466 |
+
466|22|M|student|90804
|
467 |
+
467|29|M|engineer|91201
|
468 |
+
468|28|M|engineer|02341
|
469 |
+
469|60|M|educator|78628
|
470 |
+
470|24|M|programmer|10021
|
471 |
+
471|10|M|student|77459
|
472 |
+
472|24|M|student|87544
|
473 |
+
473|29|M|student|94708
|
474 |
+
474|51|M|executive|93711
|
475 |
+
475|30|M|programmer|75230
|
476 |
+
476|28|M|student|60440
|
477 |
+
477|23|F|student|02125
|
478 |
+
478|29|M|other|10019
|
479 |
+
479|30|M|educator|55409
|
480 |
+
480|57|M|retired|98257
|
481 |
+
481|73|M|retired|37771
|
482 |
+
482|18|F|student|40256
|
483 |
+
483|29|M|scientist|43212
|
484 |
+
484|27|M|student|21208
|
485 |
+
485|44|F|educator|95821
|
486 |
+
486|39|M|educator|93101
|
487 |
+
487|22|M|engineer|92121
|
488 |
+
488|48|M|technician|21012
|
489 |
+
489|55|M|other|45218
|
490 |
+
490|29|F|artist|V5A2B
|
491 |
+
491|43|F|writer|53711
|
492 |
+
492|57|M|educator|94618
|
493 |
+
493|22|M|engineer|60090
|
494 |
+
494|38|F|administrator|49428
|
495 |
+
495|29|M|engineer|03052
|
496 |
+
496|21|F|student|55414
|
497 |
+
497|20|M|student|50112
|
498 |
+
498|26|M|writer|55408
|
499 |
+
499|42|M|programmer|75006
|
500 |
+
500|28|M|administrator|94305
|
501 |
+
501|22|M|student|10025
|
502 |
+
502|22|M|student|23092
|
503 |
+
503|50|F|writer|27514
|
504 |
+
504|40|F|writer|92115
|
505 |
+
505|27|F|other|20657
|
506 |
+
506|46|M|programmer|03869
|
507 |
+
507|18|F|writer|28450
|
508 |
+
508|27|M|marketing|19382
|
509 |
+
509|23|M|administrator|10011
|
510 |
+
510|34|M|other|98038
|
511 |
+
511|22|M|student|21250
|
512 |
+
512|29|M|other|20090
|
513 |
+
513|43|M|administrator|26241
|
514 |
+
514|27|M|programmer|20707
|
515 |
+
515|53|M|marketing|49508
|
516 |
+
516|53|F|librarian|10021
|
517 |
+
517|24|M|student|55454
|
518 |
+
518|49|F|writer|99709
|
519 |
+
519|22|M|other|55320
|
520 |
+
520|62|M|healthcare|12603
|
521 |
+
521|19|M|student|02146
|
522 |
+
522|36|M|engineer|55443
|
523 |
+
523|50|F|administrator|04102
|
524 |
+
524|56|M|educator|02159
|
525 |
+
525|27|F|administrator|19711
|
526 |
+
526|30|M|marketing|97124
|
527 |
+
527|33|M|librarian|12180
|
528 |
+
528|18|M|student|55104
|
529 |
+
529|47|F|administrator|44224
|
530 |
+
530|29|M|engineer|94040
|
531 |
+
531|30|F|salesman|97408
|
532 |
+
532|20|M|student|92705
|
533 |
+
533|43|M|librarian|02324
|
534 |
+
534|20|M|student|05464
|
535 |
+
535|45|F|educator|80302
|
536 |
+
536|38|M|engineer|30078
|
537 |
+
537|36|M|engineer|22902
|
538 |
+
538|31|M|scientist|21010
|
539 |
+
539|53|F|administrator|80303
|
540 |
+
540|28|M|engineer|91201
|
541 |
+
541|19|F|student|84302
|
542 |
+
542|21|M|student|60515
|
543 |
+
543|33|M|scientist|95123
|
544 |
+
544|44|F|other|29464
|
545 |
+
545|27|M|technician|08052
|
546 |
+
546|36|M|executive|22911
|
547 |
+
547|50|M|educator|14534
|
548 |
+
548|51|M|writer|95468
|
549 |
+
549|42|M|scientist|45680
|
550 |
+
550|16|F|student|95453
|
551 |
+
551|25|M|programmer|55414
|
552 |
+
552|45|M|other|68147
|
553 |
+
553|58|M|educator|62901
|
554 |
+
554|32|M|scientist|62901
|
555 |
+
555|29|F|educator|23227
|
556 |
+
556|35|F|educator|30606
|
557 |
+
557|30|F|writer|11217
|
558 |
+
558|56|F|writer|63132
|
559 |
+
559|69|M|executive|10022
|
560 |
+
560|32|M|student|10003
|
561 |
+
561|23|M|engineer|60005
|
562 |
+
562|54|F|administrator|20879
|
563 |
+
563|39|F|librarian|32707
|
564 |
+
564|65|M|retired|94591
|
565 |
+
565|40|M|student|55422
|
566 |
+
566|20|M|student|14627
|
567 |
+
567|24|M|entertainment|10003
|
568 |
+
568|39|M|educator|01915
|
569 |
+
569|34|M|educator|91903
|
570 |
+
570|26|M|educator|14627
|
571 |
+
571|34|M|artist|01945
|
572 |
+
572|51|M|educator|20003
|
573 |
+
573|68|M|retired|48911
|
574 |
+
574|56|M|educator|53188
|
575 |
+
575|33|M|marketing|46032
|
576 |
+
576|48|M|executive|98281
|
577 |
+
577|36|F|student|77845
|
578 |
+
578|31|M|administrator|M7A1A
|
579 |
+
579|32|M|educator|48103
|
580 |
+
580|16|M|student|17961
|
581 |
+
581|37|M|other|94131
|
582 |
+
582|17|M|student|93003
|
583 |
+
583|44|M|engineer|29631
|
584 |
+
584|25|M|student|27511
|
585 |
+
585|69|M|librarian|98501
|
586 |
+
586|20|M|student|79508
|
587 |
+
587|26|M|other|14216
|
588 |
+
588|18|F|student|93063
|
589 |
+
589|21|M|lawyer|90034
|
590 |
+
590|50|M|educator|82435
|
591 |
+
591|57|F|librarian|92093
|
592 |
+
592|18|M|student|97520
|
593 |
+
593|31|F|educator|68767
|
594 |
+
594|46|M|educator|M4J2K
|
595 |
+
595|25|M|programmer|31909
|
596 |
+
596|20|M|artist|77073
|
597 |
+
597|23|M|other|84116
|
598 |
+
598|40|F|marketing|43085
|
599 |
+
599|22|F|student|R3T5K
|
600 |
+
600|34|M|programmer|02320
|
601 |
+
601|19|F|artist|99687
|
602 |
+
602|47|F|other|34656
|
603 |
+
603|21|M|programmer|47905
|
604 |
+
604|39|M|educator|11787
|
605 |
+
605|33|M|engineer|33716
|
606 |
+
606|28|M|programmer|63044
|
607 |
+
607|49|F|healthcare|02154
|
608 |
+
608|22|M|other|10003
|
609 |
+
609|13|F|student|55106
|
610 |
+
610|22|M|student|21227
|
611 |
+
611|46|M|librarian|77008
|
612 |
+
612|36|M|educator|79070
|
613 |
+
613|37|F|marketing|29678
|
614 |
+
614|54|M|educator|80227
|
615 |
+
615|38|M|educator|27705
|
616 |
+
616|55|M|scientist|50613
|
617 |
+
617|27|F|writer|11201
|
618 |
+
618|15|F|student|44212
|
619 |
+
619|17|M|student|44134
|
620 |
+
620|18|F|writer|81648
|
621 |
+
621|17|M|student|60402
|
622 |
+
622|25|M|programmer|14850
|
623 |
+
623|50|F|educator|60187
|
624 |
+
624|19|M|student|30067
|
625 |
+
625|27|M|programmer|20723
|
626 |
+
626|23|M|scientist|19807
|
627 |
+
627|24|M|engineer|08034
|
628 |
+
628|13|M|none|94306
|
629 |
+
629|46|F|other|44224
|
630 |
+
630|26|F|healthcare|55408
|
631 |
+
631|18|F|student|38866
|
632 |
+
632|18|M|student|55454
|
633 |
+
633|35|M|programmer|55414
|
634 |
+
634|39|M|engineer|T8H1N
|
635 |
+
635|22|M|other|23237
|
636 |
+
636|47|M|educator|48043
|
637 |
+
637|30|M|other|74101
|
638 |
+
638|45|M|engineer|01940
|
639 |
+
639|42|F|librarian|12065
|
640 |
+
640|20|M|student|61801
|
641 |
+
641|24|M|student|60626
|
642 |
+
642|18|F|student|95521
|
643 |
+
643|39|M|scientist|55122
|
644 |
+
644|51|M|retired|63645
|
645 |
+
645|27|M|programmer|53211
|
646 |
+
646|17|F|student|51250
|
647 |
+
647|40|M|educator|45810
|
648 |
+
648|43|M|engineer|91351
|
649 |
+
649|20|M|student|39762
|
650 |
+
650|42|M|engineer|83814
|
651 |
+
651|65|M|retired|02903
|
652 |
+
652|35|M|other|22911
|
653 |
+
653|31|M|executive|55105
|
654 |
+
654|27|F|student|78739
|
655 |
+
655|50|F|healthcare|60657
|
656 |
+
656|48|M|educator|10314
|
657 |
+
657|26|F|none|78704
|
658 |
+
658|33|M|programmer|92626
|
659 |
+
659|31|M|educator|54248
|
660 |
+
660|26|M|student|77380
|
661 |
+
661|28|M|programmer|98121
|
662 |
+
662|55|M|librarian|19102
|
663 |
+
663|26|M|other|19341
|
664 |
+
664|30|M|engineer|94115
|
665 |
+
665|25|M|administrator|55412
|
666 |
+
666|44|M|administrator|61820
|
667 |
+
667|35|M|librarian|01970
|
668 |
+
668|29|F|writer|10016
|
669 |
+
669|37|M|other|20009
|
670 |
+
670|30|M|technician|21114
|
671 |
+
671|21|M|programmer|91919
|
672 |
+
672|54|F|administrator|90095
|
673 |
+
673|51|M|educator|22906
|
674 |
+
674|13|F|student|55337
|
675 |
+
675|34|M|other|28814
|
676 |
+
676|30|M|programmer|32712
|
677 |
+
677|20|M|other|99835
|
678 |
+
678|50|M|educator|61462
|
679 |
+
679|20|F|student|54302
|
680 |
+
680|33|M|lawyer|90405
|
681 |
+
681|44|F|marketing|97208
|
682 |
+
682|23|M|programmer|55128
|
683 |
+
683|42|M|librarian|23509
|
684 |
+
684|28|M|student|55414
|
685 |
+
685|32|F|librarian|55409
|
686 |
+
686|32|M|educator|26506
|
687 |
+
687|31|F|healthcare|27713
|
688 |
+
688|37|F|administrator|60476
|
689 |
+
689|25|M|other|45439
|
690 |
+
690|35|M|salesman|63304
|
691 |
+
691|34|M|educator|60089
|
692 |
+
692|34|M|engineer|18053
|
693 |
+
693|43|F|healthcare|85210
|
694 |
+
694|60|M|programmer|06365
|
695 |
+
695|26|M|writer|38115
|
696 |
+
696|55|M|other|94920
|
697 |
+
697|25|M|other|77042
|
698 |
+
698|28|F|programmer|06906
|
699 |
+
699|44|M|other|96754
|
700 |
+
700|17|M|student|76309
|
701 |
+
701|51|F|librarian|56321
|
702 |
+
702|37|M|other|89104
|
703 |
+
703|26|M|educator|49512
|
704 |
+
704|51|F|librarian|91105
|
705 |
+
705|21|F|student|54494
|
706 |
+
706|23|M|student|55454
|
707 |
+
707|56|F|librarian|19146
|
708 |
+
708|26|F|homemaker|96349
|
709 |
+
709|21|M|other|N4T1A
|
710 |
+
710|19|M|student|92020
|
711 |
+
711|22|F|student|15203
|
712 |
+
712|22|F|student|54901
|
713 |
+
713|42|F|other|07204
|
714 |
+
714|26|M|engineer|55343
|
715 |
+
715|21|M|technician|91206
|
716 |
+
716|36|F|administrator|44265
|
717 |
+
717|24|M|technician|84105
|
718 |
+
718|42|M|technician|64118
|
719 |
+
719|37|F|other|V0R2H
|
720 |
+
720|49|F|administrator|16506
|
721 |
+
721|24|F|entertainment|11238
|
722 |
+
722|50|F|homemaker|17331
|
723 |
+
723|26|M|executive|94403
|
724 |
+
724|31|M|executive|40243
|
725 |
+
725|21|M|student|91711
|
726 |
+
726|25|F|administrator|80538
|
727 |
+
727|25|M|student|78741
|
728 |
+
728|58|M|executive|94306
|
729 |
+
729|19|M|student|56567
|
730 |
+
730|31|F|scientist|32114
|
731 |
+
731|41|F|educator|70403
|
732 |
+
732|28|F|other|98405
|
733 |
+
733|44|F|other|60630
|
734 |
+
734|25|F|other|63108
|
735 |
+
735|29|F|healthcare|85719
|
736 |
+
736|48|F|writer|94618
|
737 |
+
737|30|M|programmer|98072
|
738 |
+
738|35|M|technician|95403
|
739 |
+
739|35|M|technician|73162
|
740 |
+
740|25|F|educator|22206
|
741 |
+
741|25|M|writer|63108
|
742 |
+
742|35|M|student|29210
|
743 |
+
743|31|M|programmer|92660
|
744 |
+
744|35|M|marketing|47024
|
745 |
+
745|42|M|writer|55113
|
746 |
+
746|25|M|engineer|19047
|
747 |
+
747|19|M|other|93612
|
748 |
+
748|28|M|administrator|94720
|
749 |
+
749|33|M|other|80919
|
750 |
+
750|28|M|administrator|32303
|
751 |
+
751|24|F|other|90034
|
752 |
+
752|60|M|retired|21201
|
753 |
+
753|56|M|salesman|91206
|
754 |
+
754|59|F|librarian|62901
|
755 |
+
755|44|F|educator|97007
|
756 |
+
756|30|F|none|90247
|
757 |
+
757|26|M|student|55104
|
758 |
+
758|27|M|student|53706
|
759 |
+
759|20|F|student|68503
|
760 |
+
760|35|F|other|14211
|
761 |
+
761|17|M|student|97302
|
762 |
+
762|32|M|administrator|95050
|
763 |
+
763|27|M|scientist|02113
|
764 |
+
764|27|F|educator|62903
|
765 |
+
765|31|M|student|33066
|
766 |
+
766|42|M|other|10960
|
767 |
+
767|70|M|engineer|00000
|
768 |
+
768|29|M|administrator|12866
|
769 |
+
769|39|M|executive|06927
|
770 |
+
770|28|M|student|14216
|
771 |
+
771|26|M|student|15232
|
772 |
+
772|50|M|writer|27105
|
773 |
+
773|20|M|student|55414
|
774 |
+
774|30|M|student|80027
|
775 |
+
775|46|M|executive|90036
|
776 |
+
776|30|M|librarian|51157
|
777 |
+
777|63|M|programmer|01810
|
778 |
+
778|34|M|student|01960
|
779 |
+
779|31|M|student|K7L5J
|
780 |
+
780|49|M|programmer|94560
|
781 |
+
781|20|M|student|48825
|
782 |
+
782|21|F|artist|33205
|
783 |
+
783|30|M|marketing|77081
|
784 |
+
784|47|M|administrator|91040
|
785 |
+
785|32|M|engineer|23322
|
786 |
+
786|36|F|engineer|01754
|
787 |
+
787|18|F|student|98620
|
788 |
+
788|51|M|administrator|05779
|
789 |
+
789|29|M|other|55420
|
790 |
+
790|27|M|technician|80913
|
791 |
+
791|31|M|educator|20064
|
792 |
+
792|40|M|programmer|12205
|
793 |
+
793|22|M|student|85281
|
794 |
+
794|32|M|educator|57197
|
795 |
+
795|30|M|programmer|08610
|
796 |
+
796|32|F|writer|33755
|
797 |
+
797|44|F|other|62522
|
798 |
+
798|40|F|writer|64131
|
799 |
+
799|49|F|administrator|19716
|
800 |
+
800|25|M|programmer|55337
|
801 |
+
801|22|M|writer|92154
|
802 |
+
802|35|M|administrator|34105
|
803 |
+
803|70|M|administrator|78212
|
804 |
+
804|39|M|educator|61820
|
805 |
+
805|27|F|other|20009
|
806 |
+
806|27|M|marketing|11217
|
807 |
+
807|41|F|healthcare|93555
|
808 |
+
808|45|M|salesman|90016
|
809 |
+
809|50|F|marketing|30803
|
810 |
+
810|55|F|other|80526
|
811 |
+
811|40|F|educator|73013
|
812 |
+
812|22|M|technician|76234
|
813 |
+
813|14|F|student|02136
|
814 |
+
814|30|M|other|12345
|
815 |
+
815|32|M|other|28806
|
816 |
+
816|34|M|other|20755
|
817 |
+
817|19|M|student|60152
|
818 |
+
818|28|M|librarian|27514
|
819 |
+
819|59|M|administrator|40205
|
820 |
+
820|22|M|student|37725
|
821 |
+
821|37|M|engineer|77845
|
822 |
+
822|29|F|librarian|53144
|
823 |
+
823|27|M|artist|50322
|
824 |
+
824|31|M|other|15017
|
825 |
+
825|44|M|engineer|05452
|
826 |
+
826|28|M|artist|77048
|
827 |
+
827|23|F|engineer|80228
|
828 |
+
828|28|M|librarian|85282
|
829 |
+
829|48|M|writer|80209
|
830 |
+
830|46|M|programmer|53066
|
831 |
+
831|21|M|other|33765
|
832 |
+
832|24|M|technician|77042
|
833 |
+
833|34|M|writer|90019
|
834 |
+
834|26|M|other|64153
|
835 |
+
835|44|F|executive|11577
|
836 |
+
836|44|M|artist|10018
|
837 |
+
837|36|F|artist|55409
|
838 |
+
838|23|M|student|01375
|
839 |
+
839|38|F|entertainment|90814
|
840 |
+
840|39|M|artist|55406
|
841 |
+
841|45|M|doctor|47401
|
842 |
+
842|40|M|writer|93055
|
843 |
+
843|35|M|librarian|44212
|
844 |
+
844|22|M|engineer|95662
|
845 |
+
845|64|M|doctor|97405
|
846 |
+
846|27|M|lawyer|47130
|
847 |
+
847|29|M|student|55417
|
848 |
+
848|46|M|engineer|02146
|
849 |
+
849|15|F|student|25652
|
850 |
+
850|34|M|technician|78390
|
851 |
+
851|18|M|other|29646
|
852 |
+
852|46|M|administrator|94086
|
853 |
+
853|49|M|writer|40515
|
854 |
+
854|29|F|student|55408
|
855 |
+
855|53|M|librarian|04988
|
856 |
+
856|43|F|marketing|97215
|
857 |
+
857|35|F|administrator|V1G4L
|
858 |
+
858|63|M|educator|09645
|
859 |
+
859|18|F|other|06492
|
860 |
+
860|70|F|retired|48322
|
861 |
+
861|38|F|student|14085
|
862 |
+
862|25|M|executive|13820
|
863 |
+
863|17|M|student|60089
|
864 |
+
864|27|M|programmer|63021
|
865 |
+
865|25|M|artist|11231
|
866 |
+
866|45|M|other|60302
|
867 |
+
867|24|M|scientist|92507
|
868 |
+
868|21|M|programmer|55303
|
869 |
+
869|30|M|student|10025
|
870 |
+
870|22|M|student|65203
|
871 |
+
871|31|M|executive|44648
|
872 |
+
872|19|F|student|74078
|
873 |
+
873|48|F|administrator|33763
|
874 |
+
874|36|M|scientist|37076
|
875 |
+
875|24|F|student|35802
|
876 |
+
876|41|M|other|20902
|
877 |
+
877|30|M|other|77504
|
878 |
+
878|50|F|educator|98027
|
879 |
+
879|33|F|administrator|55337
|
880 |
+
880|13|M|student|83702
|
881 |
+
881|39|M|marketing|43017
|
882 |
+
882|35|M|engineer|40503
|
883 |
+
883|49|M|librarian|50266
|
884 |
+
884|44|M|engineer|55337
|
885 |
+
885|30|F|other|95316
|
886 |
+
886|20|M|student|61820
|
887 |
+
887|14|F|student|27249
|
888 |
+
888|41|M|scientist|17036
|
889 |
+
889|24|M|technician|78704
|
890 |
+
890|32|M|student|97301
|
891 |
+
891|51|F|administrator|03062
|
892 |
+
892|36|M|other|45243
|
893 |
+
893|25|M|student|95823
|
894 |
+
894|47|M|educator|74075
|
895 |
+
895|31|F|librarian|32301
|
896 |
+
896|28|M|writer|91505
|
897 |
+
897|30|M|other|33484
|
898 |
+
898|23|M|homemaker|61755
|
899 |
+
899|32|M|other|55116
|
900 |
+
900|60|M|retired|18505
|
901 |
+
901|38|M|executive|L1V3W
|
902 |
+
902|45|F|artist|97203
|
903 |
+
903|28|M|educator|20850
|
904 |
+
904|17|F|student|61073
|
905 |
+
905|27|M|other|30350
|
906 |
+
906|45|M|librarian|70124
|
907 |
+
907|25|F|other|80526
|
908 |
+
908|44|F|librarian|68504
|
909 |
+
909|50|F|educator|53171
|
910 |
+
910|28|M|healthcare|29301
|
911 |
+
911|37|F|writer|53210
|
912 |
+
912|51|M|other|06512
|
913 |
+
913|27|M|student|76201
|
914 |
+
914|44|F|other|08105
|
915 |
+
915|50|M|entertainment|60614
|
916 |
+
916|27|M|engineer|N2L5N
|
917 |
+
917|22|F|student|20006
|
918 |
+
918|40|M|scientist|70116
|
919 |
+
919|25|M|other|14216
|
920 |
+
920|30|F|artist|90008
|
921 |
+
921|20|F|student|98801
|
922 |
+
922|29|F|administrator|21114
|
923 |
+
923|21|M|student|E2E3R
|
924 |
+
924|29|M|other|11753
|
925 |
+
925|18|F|salesman|49036
|
926 |
+
926|49|M|entertainment|01701
|
927 |
+
927|23|M|programmer|55428
|
928 |
+
928|21|M|student|55408
|
929 |
+
929|44|M|scientist|53711
|
930 |
+
930|28|F|scientist|07310
|
931 |
+
931|60|M|educator|33556
|
932 |
+
932|58|M|educator|06437
|
933 |
+
933|28|M|student|48105
|
934 |
+
934|61|M|engineer|22902
|
935 |
+
935|42|M|doctor|66221
|
936 |
+
936|24|M|other|32789
|
937 |
+
937|48|M|educator|98072
|
938 |
+
938|38|F|technician|55038
|
939 |
+
939|26|F|student|33319
|
940 |
+
940|32|M|administrator|02215
|
941 |
+
941|20|M|student|97229
|
942 |
+
942|48|F|librarian|78209
|
943 |
+
943|22|M|student|77841
|
ml-100k/ml-100k/u1.base
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/u1.test
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/u2.base
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/u2.test
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/u3.base
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/u3.test
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/u4.base
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/u4.test
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/u5.base
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/u5.test
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/ua.base
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/ua.test
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/ub.base
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ml-100k/ml-100k/ub.test
ADDED
The diff for this file is too large to render.
See raw diff
|
|