prateekiiest commited on
Commit
025869f
1 Parent(s): dd0c1d1
app.py ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+ import plotly.express as px
3
+ import numpy as np
4
+ import matplotlib.pyplot as plt
5
+ import gradio as gr
6
+ from math import sqrt
7
+ import matplotlib
8
+
9
+ matplotlib.use("Agg")
10
+
11
+
12
+ genre_df = pd.read_csv(r"ml-100k\ml-100k\u.genre",
13
+ sep="|", names=["genreName", "count"])
14
+
15
+
16
+ user_df = pd.read_csv(r"ml-100k\ml-100k\u.user", sep="|",
17
+ names=["userID", "age", "gender", "occupation", "zip_code"])
18
+ movie_df = pd.read_csv(r"ml-100k\ml-100k\u.item", sep="|", names=["itemID", "title", "release_date", "video_release_date", "IMDb_URL", "unknown", "Action", "Adventure", "Animation", "Children's", "Comedy", "Crime", "Documentary", "Drama", "Fantasy", "Film-Noir", "Horror", "Musical", "Mystery", "Romance", "Sci-Fi", "Thriller", "War", "Western"],encoding='latin-1')
19
+
20
+ prediction_df = pd.read_csv(r"pred.csv", sep=",")
21
+
22
+
23
+ def mappingMovie(mid):
24
+ return movie_df.loc[movie_df["itemID"].values==mid]["title"].values[0]
25
+
26
+ prediction_df["Movie Title"] = prediction_df["itemID"].apply(mappingMovie)
27
+
28
+
29
+ df = pd.read_csv(r"ml-100k\ml-100k\u.data", sep="\t", names=["userID", "itemID", "rating", "timestamp"])
30
+
31
+
32
+ rating_df = df[df["rating"]>=1.0]
33
+
34
+ rating_df["Movie Title"] = rating_df["itemID"].apply(mappingMovie)
35
+
36
+ print(rating_df.head(7))
37
+
38
+ num_users = len(prediction_df["userID"].unique())
39
+
40
+ def get_top_rated_movies_from_user(id):
41
+ entire_df= rating_df[rating_df["userID"]==id].sort_values(by="rating", ascending=False).head(10)
42
+ return entire_df
43
+ def get_recommendations(id):
44
+ entire_df= prediction_df[prediction_df["userID"]==id].sort_values(by="prediction", ascending=False).head(10)
45
+ entire_df.drop(columns=["Unnamed: 0"], inplace=True)
46
+ return entire_df
47
+
48
+ def update_user(id):
49
+ return get_top_rated_movies_from_user(id), get_recommendations(id)
50
+ def random_user():
51
+ return update_user(np.random.randint(0, num_users-1))
52
+
53
+ demo = gr.Blocks()
54
+
55
+ with demo:
56
+ gr.Markdown("""
57
+ <div>
58
+ <h1 style='text-align: center'>Movie Recommender</h1>
59
+ Collaborative Filtering is used to predict the top 10 recommended movies for a particular user from the dataset based on that user and previous movies they have rated.
60
+
61
+ Note: Currently there is a bug with sliders. If you "click and drag" on the slider it will not use the correct user. Please only "click" on the slider :D.
62
+ </div>
63
+ """)
64
+
65
+ with gr.Box():
66
+ gr.Markdown(
67
+ """
68
+ ### Input
69
+ #### Select a user to get recommendations for.
70
+ """)
71
+
72
+ inp1 = gr.Slider(0, num_users-1, value=0, label='User')
73
+ # btn1 = gr.Button('Random User')
74
+
75
+ # top_rated_from_user = get_top_rated_from_user(0)
76
+ gr.Markdown(
77
+ """
78
+ <br>
79
+ """)
80
+ gr.Markdown(
81
+ """
82
+ #### Movies with the Highest Ratings from this user
83
+ """)
84
+ df1 = gr.DataFrame(headers=["title", "genres"], datatype=["str", "str"], interactive=False)
85
+
86
+ with gr.Box():
87
+ # recommendations = get_recommendations(0)
88
+ gr.Markdown(
89
+ """
90
+ ### Output
91
+ #### Top 10 movie recommendations
92
+ """)
93
+ df2 = gr.DataFrame(headers=["title", "genres"], datatype=["str", "str"], interactive=False)
94
+
95
+ gr.Markdown("""
96
+ <p style='text-align: center'>
97
+ <a href='https://keras.io/examples/structured_data/collaborative_filtering_movielens/' target='_blank' style='text-decoration: underline'></a>
98
+ <br>
99
+ Space by Scott Krstyen (mindwrapped)
100
+ </p>
101
+ """)
102
+
103
+
104
+ inp1.change(fn=update_user,
105
+ inputs=inp1,
106
+ outputs=[df1, df2])
107
+
108
+
109
+ demo.launch(debug=True)
ml-100k/ml-100k/README ADDED
@@ -0,0 +1,157 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ SUMMARY & USAGE LICENSE
2
+ =============================================
3
+
4
+ MovieLens data sets were collected by the GroupLens Research Project
5
+ at the University of Minnesota.
6
+
7
+ This data set consists of:
8
+ * 100,000 ratings (1-5) from 943 users on 1682 movies.
9
+ * Each user has rated at least 20 movies.
10
+ * Simple demographic info for the users (age, gender, occupation, zip)
11
+
12
+ The data was collected through the MovieLens web site
13
+ (movielens.umn.edu) during the seven-month period from September 19th,
14
+ 1997 through April 22nd, 1998. This data has been cleaned up - users
15
+ who had less than 20 ratings or did not have complete demographic
16
+ information were removed from this data set. Detailed descriptions of
17
+ the data file can be found at the end of this file.
18
+
19
+ Neither the University of Minnesota nor any of the researchers
20
+ involved can guarantee the correctness of the data, its suitability
21
+ for any particular purpose, or the validity of results based on the
22
+ use of the data set. The data set may be used for any research
23
+ purposes under the following conditions:
24
+
25
+ * The user may not state or imply any endorsement from the
26
+ University of Minnesota or the GroupLens Research Group.
27
+
28
+ * The user must acknowledge the use of the data set in
29
+ publications resulting from the use of the data set
30
+ (see below for citation information).
31
+
32
+ * The user may not redistribute the data without separate
33
+ permission.
34
+
35
+ * The user may not use this information for any commercial or
36
+ revenue-bearing purposes without first obtaining permission
37
+ from a faculty member of the GroupLens Research Project at the
38
+ University of Minnesota.
39
+
40
+ If you have any further questions or comments, please contact GroupLens
41
+ <grouplens-info@cs.umn.edu>.
42
+
43
+ CITATION
44
+ ==============================================
45
+
46
+ To acknowledge use of the dataset in publications, please cite the
47
+ following paper:
48
+
49
+ F. Maxwell Harper and Joseph A. Konstan. 2015. The MovieLens Datasets:
50
+ History and Context. ACM Transactions on Interactive Intelligent
51
+ Systems (TiiS) 5, 4, Article 19 (December 2015), 19 pages.
52
+ DOI=http://dx.doi.org/10.1145/2827872
53
+
54
+
55
+ ACKNOWLEDGEMENTS
56
+ ==============================================
57
+
58
+ Thanks to Al Borchers for cleaning up this data and writing the
59
+ accompanying scripts.
60
+
61
+ PUBLISHED WORK THAT HAS USED THIS DATASET
62
+ ==============================================
63
+
64
+ Herlocker, J., Konstan, J., Borchers, A., Riedl, J.. An Algorithmic
65
+ Framework for Performing Collaborative Filtering. Proceedings of the
66
+ 1999 Conference on Research and Development in Information
67
+ Retrieval. Aug. 1999.
68
+
69
+ FURTHER INFORMATION ABOUT THE GROUPLENS RESEARCH PROJECT
70
+ ==============================================
71
+
72
+ The GroupLens Research Project is a research group in the Department
73
+ of Computer Science and Engineering at the University of Minnesota.
74
+ Members of the GroupLens Research Project are involved in many
75
+ research projects related to the fields of information filtering,
76
+ collaborative filtering, and recommender systems. The project is lead
77
+ by professors John Riedl and Joseph Konstan. The project began to
78
+ explore automated collaborative filtering in 1992, but is most well
79
+ known for its world wide trial of an automated collaborative filtering
80
+ system for Usenet news in 1996. The technology developed in the
81
+ Usenet trial formed the base for the formation of Net Perceptions,
82
+ Inc., which was founded by members of GroupLens Research. Since then
83
+ the project has expanded its scope to research overall information
84
+ filtering solutions, integrating in content-based methods as well as
85
+ improving current collaborative filtering technology.
86
+
87
+ Further information on the GroupLens Research project, including
88
+ research publications, can be found at the following web site:
89
+
90
+ http://www.grouplens.org/
91
+
92
+ GroupLens Research currently operates a movie recommender based on
93
+ collaborative filtering:
94
+
95
+ http://www.movielens.org/
96
+
97
+ DETAILED DESCRIPTIONS OF DATA FILES
98
+ ==============================================
99
+
100
+ Here are brief descriptions of the data.
101
+
102
+ ml-data.tar.gz -- Compressed tar file. To rebuild the u data files do this:
103
+ gunzip ml-data.tar.gz
104
+ tar xvf ml-data.tar
105
+ mku.sh
106
+
107
+ u.data -- The full u data set, 100000 ratings by 943 users on 1682 items.
108
+ Each user has rated at least 20 movies. Users and items are
109
+ numbered consecutively from 1. The data is randomly
110
+ ordered. This is a tab separated list of
111
+ user id | item id | rating | timestamp.
112
+ The time stamps are unix seconds since 1/1/1970 UTC
113
+
114
+ u.info -- The number of users, items, and ratings in the u data set.
115
+
116
+ u.item -- Information about the items (movies); this is a tab separated
117
+ list of
118
+ movie id | movie title | release date | video release date |
119
+ IMDb URL | unknown | Action | Adventure | Animation |
120
+ Children's | Comedy | Crime | Documentary | Drama | Fantasy |
121
+ Film-Noir | Horror | Musical | Mystery | Romance | Sci-Fi |
122
+ Thriller | War | Western |
123
+ The last 19 fields are the genres, a 1 indicates the movie
124
+ is of that genre, a 0 indicates it is not; movies can be in
125
+ several genres at once.
126
+ The movie ids are the ones used in the u.data data set.
127
+
128
+ u.genre -- A list of the genres.
129
+
130
+ u.user -- Demographic information about the users; this is a tab
131
+ separated list of
132
+ user id | age | gender | occupation | zip code
133
+ The user ids are the ones used in the u.data data set.
134
+
135
+ u.occupation -- A list of the occupations.
136
+
137
+ u1.base -- The data sets u1.base and u1.test through u5.base and u5.test
138
+ u1.test are 80%/20% splits of the u data into training and test data.
139
+ u2.base Each of u1, ..., u5 have disjoint test sets; this if for
140
+ u2.test 5 fold cross validation (where you repeat your experiment
141
+ u3.base with each training and test set and average the results).
142
+ u3.test These data sets can be generated from u.data by mku.sh.
143
+ u4.base
144
+ u4.test
145
+ u5.base
146
+ u5.test
147
+
148
+ ua.base -- The data sets ua.base, ua.test, ub.base, and ub.test
149
+ ua.test split the u data into a training set and a test set with
150
+ ub.base exactly 10 ratings per user in the test set. The sets
151
+ ub.test ua.test and ub.test are disjoint. These data sets can
152
+ be generated from u.data by mku.sh.
153
+
154
+ allbut.pl -- The script that generates training and test sets where
155
+ all but n of a users ratings are in the training data.
156
+
157
+ mku.sh -- A shell script to generate all the u data sets from u.data.
ml-100k/ml-100k/allbut.pl ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/local/bin/perl
2
+
3
+ # get args
4
+ if (@ARGV < 3) {
5
+ print STDERR "Usage: $0 base_name start stop max_test [ratings ...]\n";
6
+ exit 1;
7
+ }
8
+ $basename = shift;
9
+ $start = shift;
10
+ $stop = shift;
11
+ $maxtest = shift;
12
+
13
+ # open files
14
+ open( TESTFILE, ">$basename.test" ) or die "Cannot open $basename.test for writing\n";
15
+ open( BASEFILE, ">$basename.base" ) or die "Cannot open $basename.base for writing\n";
16
+
17
+ # init variables
18
+ $testcnt = 0;
19
+
20
+ while (<>) {
21
+ ($user) = split;
22
+ if (! defined $ratingcnt{$user}) {
23
+ $ratingcnt{$user} = 0;
24
+ }
25
+ ++$ratingcnt{$user};
26
+ if (($testcnt < $maxtest || $maxtest <= 0)
27
+ && $ratingcnt{$user} >= $start && $ratingcnt{$user} <= $stop) {
28
+ ++$testcnt;
29
+ print TESTFILE;
30
+ }
31
+ else {
32
+ print BASEFILE;
33
+ }
34
+ }
ml-100k/ml-100k/mku.sh ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/bin/sh
2
+
3
+ trap `rm -f tmp.$$; exit 1` 1 2 15
4
+
5
+ for i in 1 2 3 4 5
6
+ do
7
+ head -`expr $i \* 20000` u.data | tail -20000 > tmp.$$
8
+ sort -t" " -k 1,1n -k 2,2n tmp.$$ > u$i.test
9
+ head -`expr \( $i - 1 \) \* 20000` u.data > tmp.$$
10
+ tail -`expr \( 5 - $i \) \* 20000` u.data >> tmp.$$
11
+ sort -t" " -k 1,1n -k 2,2n tmp.$$ > u$i.base
12
+ done
13
+
14
+ allbut.pl ua 1 10 100000 u.data
15
+ sort -t" " -k 1,1n -k 2,2n ua.base > tmp.$$
16
+ mv tmp.$$ ua.base
17
+ sort -t" " -k 1,1n -k 2,2n ua.test > tmp.$$
18
+ mv tmp.$$ ua.test
19
+
20
+ allbut.pl ub 11 20 100000 u.data
21
+ sort -t" " -k 1,1n -k 2,2n ub.base > tmp.$$
22
+ mv tmp.$$ ub.base
23
+ sort -t" " -k 1,1n -k 2,2n ub.test > tmp.$$
24
+ mv tmp.$$ ub.test
25
+
ml-100k/ml-100k/u.data ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/u.genre ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ unknown|0
2
+ Action|1
3
+ Adventure|2
4
+ Animation|3
5
+ Children's|4
6
+ Comedy|5
7
+ Crime|6
8
+ Documentary|7
9
+ Drama|8
10
+ Fantasy|9
11
+ Film-Noir|10
12
+ Horror|11
13
+ Musical|12
14
+ Mystery|13
15
+ Romance|14
16
+ Sci-Fi|15
17
+ Thriller|16
18
+ War|17
19
+ Western|18
20
+
ml-100k/ml-100k/u.info ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ 943 users
2
+ 1682 items
3
+ 100000 ratings
ml-100k/ml-100k/u.item ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/u.occupation ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ administrator
2
+ artist
3
+ doctor
4
+ educator
5
+ engineer
6
+ entertainment
7
+ executive
8
+ healthcare
9
+ homemaker
10
+ lawyer
11
+ librarian
12
+ marketing
13
+ none
14
+ other
15
+ programmer
16
+ retired
17
+ salesman
18
+ scientist
19
+ student
20
+ technician
21
+ writer
ml-100k/ml-100k/u.user ADDED
@@ -0,0 +1,943 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ 1|24|M|technician|85711
2
+ 2|53|F|other|94043
3
+ 3|23|M|writer|32067
4
+ 4|24|M|technician|43537
5
+ 5|33|F|other|15213
6
+ 6|42|M|executive|98101
7
+ 7|57|M|administrator|91344
8
+ 8|36|M|administrator|05201
9
+ 9|29|M|student|01002
10
+ 10|53|M|lawyer|90703
11
+ 11|39|F|other|30329
12
+ 12|28|F|other|06405
13
+ 13|47|M|educator|29206
14
+ 14|45|M|scientist|55106
15
+ 15|49|F|educator|97301
16
+ 16|21|M|entertainment|10309
17
+ 17|30|M|programmer|06355
18
+ 18|35|F|other|37212
19
+ 19|40|M|librarian|02138
20
+ 20|42|F|homemaker|95660
21
+ 21|26|M|writer|30068
22
+ 22|25|M|writer|40206
23
+ 23|30|F|artist|48197
24
+ 24|21|F|artist|94533
25
+ 25|39|M|engineer|55107
26
+ 26|49|M|engineer|21044
27
+ 27|40|F|librarian|30030
28
+ 28|32|M|writer|55369
29
+ 29|41|M|programmer|94043
30
+ 30|7|M|student|55436
31
+ 31|24|M|artist|10003
32
+ 32|28|F|student|78741
33
+ 33|23|M|student|27510
34
+ 34|38|F|administrator|42141
35
+ 35|20|F|homemaker|42459
36
+ 36|19|F|student|93117
37
+ 37|23|M|student|55105
38
+ 38|28|F|other|54467
39
+ 39|41|M|entertainment|01040
40
+ 40|38|M|scientist|27514
41
+ 41|33|M|engineer|80525
42
+ 42|30|M|administrator|17870
43
+ 43|29|F|librarian|20854
44
+ 44|26|M|technician|46260
45
+ 45|29|M|programmer|50233
46
+ 46|27|F|marketing|46538
47
+ 47|53|M|marketing|07102
48
+ 48|45|M|administrator|12550
49
+ 49|23|F|student|76111
50
+ 50|21|M|writer|52245
51
+ 51|28|M|educator|16509
52
+ 52|18|F|student|55105
53
+ 53|26|M|programmer|55414
54
+ 54|22|M|executive|66315
55
+ 55|37|M|programmer|01331
56
+ 56|25|M|librarian|46260
57
+ 57|16|M|none|84010
58
+ 58|27|M|programmer|52246
59
+ 59|49|M|educator|08403
60
+ 60|50|M|healthcare|06472
61
+ 61|36|M|engineer|30040
62
+ 62|27|F|administrator|97214
63
+ 63|31|M|marketing|75240
64
+ 64|32|M|educator|43202
65
+ 65|51|F|educator|48118
66
+ 66|23|M|student|80521
67
+ 67|17|M|student|60402
68
+ 68|19|M|student|22904
69
+ 69|24|M|engineer|55337
70
+ 70|27|M|engineer|60067
71
+ 71|39|M|scientist|98034
72
+ 72|48|F|administrator|73034
73
+ 73|24|M|student|41850
74
+ 74|39|M|scientist|T8H1N
75
+ 75|24|M|entertainment|08816
76
+ 76|20|M|student|02215
77
+ 77|30|M|technician|29379
78
+ 78|26|M|administrator|61801
79
+ 79|39|F|administrator|03755
80
+ 80|34|F|administrator|52241
81
+ 81|21|M|student|21218
82
+ 82|50|M|programmer|22902
83
+ 83|40|M|other|44133
84
+ 84|32|M|executive|55369
85
+ 85|51|M|educator|20003
86
+ 86|26|M|administrator|46005
87
+ 87|47|M|administrator|89503
88
+ 88|49|F|librarian|11701
89
+ 89|43|F|administrator|68106
90
+ 90|60|M|educator|78155
91
+ 91|55|M|marketing|01913
92
+ 92|32|M|entertainment|80525
93
+ 93|48|M|executive|23112
94
+ 94|26|M|student|71457
95
+ 95|31|M|administrator|10707
96
+ 96|25|F|artist|75206
97
+ 97|43|M|artist|98006
98
+ 98|49|F|executive|90291
99
+ 99|20|M|student|63129
100
+ 100|36|M|executive|90254
101
+ 101|15|M|student|05146
102
+ 102|38|M|programmer|30220
103
+ 103|26|M|student|55108
104
+ 104|27|M|student|55108
105
+ 105|24|M|engineer|94043
106
+ 106|61|M|retired|55125
107
+ 107|39|M|scientist|60466
108
+ 108|44|M|educator|63130
109
+ 109|29|M|other|55423
110
+ 110|19|M|student|77840
111
+ 111|57|M|engineer|90630
112
+ 112|30|M|salesman|60613
113
+ 113|47|M|executive|95032
114
+ 114|27|M|programmer|75013
115
+ 115|31|M|engineer|17110
116
+ 116|40|M|healthcare|97232
117
+ 117|20|M|student|16125
118
+ 118|21|M|administrator|90210
119
+ 119|32|M|programmer|67401
120
+ 120|47|F|other|06260
121
+ 121|54|M|librarian|99603
122
+ 122|32|F|writer|22206
123
+ 123|48|F|artist|20008
124
+ 124|34|M|student|60615
125
+ 125|30|M|lawyer|22202
126
+ 126|28|F|lawyer|20015
127
+ 127|33|M|none|73439
128
+ 128|24|F|marketing|20009
129
+ 129|36|F|marketing|07039
130
+ 130|20|M|none|60115
131
+ 131|59|F|administrator|15237
132
+ 132|24|M|other|94612
133
+ 133|53|M|engineer|78602
134
+ 134|31|M|programmer|80236
135
+ 135|23|M|student|38401
136
+ 136|51|M|other|97365
137
+ 137|50|M|educator|84408
138
+ 138|46|M|doctor|53211
139
+ 139|20|M|student|08904
140
+ 140|30|F|student|32250
141
+ 141|49|M|programmer|36117
142
+ 142|13|M|other|48118
143
+ 143|42|M|technician|08832
144
+ 144|53|M|programmer|20910
145
+ 145|31|M|entertainment|V3N4P
146
+ 146|45|M|artist|83814
147
+ 147|40|F|librarian|02143
148
+ 148|33|M|engineer|97006
149
+ 149|35|F|marketing|17325
150
+ 150|20|F|artist|02139
151
+ 151|38|F|administrator|48103
152
+ 152|33|F|educator|68767
153
+ 153|25|M|student|60641
154
+ 154|25|M|student|53703
155
+ 155|32|F|other|11217
156
+ 156|25|M|educator|08360
157
+ 157|57|M|engineer|70808
158
+ 158|50|M|educator|27606
159
+ 159|23|F|student|55346
160
+ 160|27|M|programmer|66215
161
+ 161|50|M|lawyer|55104
162
+ 162|25|M|artist|15610
163
+ 163|49|M|administrator|97212
164
+ 164|47|M|healthcare|80123
165
+ 165|20|F|other|53715
166
+ 166|47|M|educator|55113
167
+ 167|37|M|other|L9G2B
168
+ 168|48|M|other|80127
169
+ 169|52|F|other|53705
170
+ 170|53|F|healthcare|30067
171
+ 171|48|F|educator|78750
172
+ 172|55|M|marketing|22207
173
+ 173|56|M|other|22306
174
+ 174|30|F|administrator|52302
175
+ 175|26|F|scientist|21911
176
+ 176|28|M|scientist|07030
177
+ 177|20|M|programmer|19104
178
+ 178|26|M|other|49512
179
+ 179|15|M|entertainment|20755
180
+ 180|22|F|administrator|60202
181
+ 181|26|M|executive|21218
182
+ 182|36|M|programmer|33884
183
+ 183|33|M|scientist|27708
184
+ 184|37|M|librarian|76013
185
+ 185|53|F|librarian|97403
186
+ 186|39|F|executive|00000
187
+ 187|26|M|educator|16801
188
+ 188|42|M|student|29440
189
+ 189|32|M|artist|95014
190
+ 190|30|M|administrator|95938
191
+ 191|33|M|administrator|95161
192
+ 192|42|M|educator|90840
193
+ 193|29|M|student|49931
194
+ 194|38|M|administrator|02154
195
+ 195|42|M|scientist|93555
196
+ 196|49|M|writer|55105
197
+ 197|55|M|technician|75094
198
+ 198|21|F|student|55414
199
+ 199|30|M|writer|17604
200
+ 200|40|M|programmer|93402
201
+ 201|27|M|writer|E2A4H
202
+ 202|41|F|educator|60201
203
+ 203|25|F|student|32301
204
+ 204|52|F|librarian|10960
205
+ 205|47|M|lawyer|06371
206
+ 206|14|F|student|53115
207
+ 207|39|M|marketing|92037
208
+ 208|43|M|engineer|01720
209
+ 209|33|F|educator|85710
210
+ 210|39|M|engineer|03060
211
+ 211|66|M|salesman|32605
212
+ 212|49|F|educator|61401
213
+ 213|33|M|executive|55345
214
+ 214|26|F|librarian|11231
215
+ 215|35|M|programmer|63033
216
+ 216|22|M|engineer|02215
217
+ 217|22|M|other|11727
218
+ 218|37|M|administrator|06513
219
+ 219|32|M|programmer|43212
220
+ 220|30|M|librarian|78205
221
+ 221|19|M|student|20685
222
+ 222|29|M|programmer|27502
223
+ 223|19|F|student|47906
224
+ 224|31|F|educator|43512
225
+ 225|51|F|administrator|58202
226
+ 226|28|M|student|92103
227
+ 227|46|M|executive|60659
228
+ 228|21|F|student|22003
229
+ 229|29|F|librarian|22903
230
+ 230|28|F|student|14476
231
+ 231|48|M|librarian|01080
232
+ 232|45|M|scientist|99709
233
+ 233|38|M|engineer|98682
234
+ 234|60|M|retired|94702
235
+ 235|37|M|educator|22973
236
+ 236|44|F|writer|53214
237
+ 237|49|M|administrator|63146
238
+ 238|42|F|administrator|44124
239
+ 239|39|M|artist|95628
240
+ 240|23|F|educator|20784
241
+ 241|26|F|student|20001
242
+ 242|33|M|educator|31404
243
+ 243|33|M|educator|60201
244
+ 244|28|M|technician|80525
245
+ 245|22|M|student|55109
246
+ 246|19|M|student|28734
247
+ 247|28|M|engineer|20770
248
+ 248|25|M|student|37235
249
+ 249|25|M|student|84103
250
+ 250|29|M|executive|95110
251
+ 251|28|M|doctor|85032
252
+ 252|42|M|engineer|07733
253
+ 253|26|F|librarian|22903
254
+ 254|44|M|educator|42647
255
+ 255|23|M|entertainment|07029
256
+ 256|35|F|none|39042
257
+ 257|17|M|student|77005
258
+ 258|19|F|student|77801
259
+ 259|21|M|student|48823
260
+ 260|40|F|artist|89801
261
+ 261|28|M|administrator|85202
262
+ 262|19|F|student|78264
263
+ 263|41|M|programmer|55346
264
+ 264|36|F|writer|90064
265
+ 265|26|M|executive|84601
266
+ 266|62|F|administrator|78756
267
+ 267|23|M|engineer|83716
268
+ 268|24|M|engineer|19422
269
+ 269|31|F|librarian|43201
270
+ 270|18|F|student|63119
271
+ 271|51|M|engineer|22932
272
+ 272|33|M|scientist|53706
273
+ 273|50|F|other|10016
274
+ 274|20|F|student|55414
275
+ 275|38|M|engineer|92064
276
+ 276|21|M|student|95064
277
+ 277|35|F|administrator|55406
278
+ 278|37|F|librarian|30033
279
+ 279|33|M|programmer|85251
280
+ 280|30|F|librarian|22903
281
+ 281|15|F|student|06059
282
+ 282|22|M|administrator|20057
283
+ 283|28|M|programmer|55305
284
+ 284|40|M|executive|92629
285
+ 285|25|M|programmer|53713
286
+ 286|27|M|student|15217
287
+ 287|21|M|salesman|31211
288
+ 288|34|M|marketing|23226
289
+ 289|11|M|none|94619
290
+ 290|40|M|engineer|93550
291
+ 291|19|M|student|44106
292
+ 292|35|F|programmer|94703
293
+ 293|24|M|writer|60804
294
+ 294|34|M|technician|92110
295
+ 295|31|M|educator|50325
296
+ 296|43|F|administrator|16803
297
+ 297|29|F|educator|98103
298
+ 298|44|M|executive|01581
299
+ 299|29|M|doctor|63108
300
+ 300|26|F|programmer|55106
301
+ 301|24|M|student|55439
302
+ 302|42|M|educator|77904
303
+ 303|19|M|student|14853
304
+ 304|22|F|student|71701
305
+ 305|23|M|programmer|94086
306
+ 306|45|M|other|73132
307
+ 307|25|M|student|55454
308
+ 308|60|M|retired|95076
309
+ 309|40|M|scientist|70802
310
+ 310|37|M|educator|91711
311
+ 311|32|M|technician|73071
312
+ 312|48|M|other|02110
313
+ 313|41|M|marketing|60035
314
+ 314|20|F|student|08043
315
+ 315|31|M|educator|18301
316
+ 316|43|F|other|77009
317
+ 317|22|M|administrator|13210
318
+ 318|65|M|retired|06518
319
+ 319|38|M|programmer|22030
320
+ 320|19|M|student|24060
321
+ 321|49|F|educator|55413
322
+ 322|20|M|student|50613
323
+ 323|21|M|student|19149
324
+ 324|21|F|student|02176
325
+ 325|48|M|technician|02139
326
+ 326|41|M|administrator|15235
327
+ 327|22|M|student|11101
328
+ 328|51|M|administrator|06779
329
+ 329|48|M|educator|01720
330
+ 330|35|F|educator|33884
331
+ 331|33|M|entertainment|91344
332
+ 332|20|M|student|40504
333
+ 333|47|M|other|V0R2M
334
+ 334|32|M|librarian|30002
335
+ 335|45|M|executive|33775
336
+ 336|23|M|salesman|42101
337
+ 337|37|M|scientist|10522
338
+ 338|39|F|librarian|59717
339
+ 339|35|M|lawyer|37901
340
+ 340|46|M|engineer|80123
341
+ 341|17|F|student|44405
342
+ 342|25|F|other|98006
343
+ 343|43|M|engineer|30093
344
+ 344|30|F|librarian|94117
345
+ 345|28|F|librarian|94143
346
+ 346|34|M|other|76059
347
+ 347|18|M|student|90210
348
+ 348|24|F|student|45660
349
+ 349|68|M|retired|61455
350
+ 350|32|M|student|97301
351
+ 351|61|M|educator|49938
352
+ 352|37|F|programmer|55105
353
+ 353|25|M|scientist|28480
354
+ 354|29|F|librarian|48197
355
+ 355|25|M|student|60135
356
+ 356|32|F|homemaker|92688
357
+ 357|26|M|executive|98133
358
+ 358|40|M|educator|10022
359
+ 359|22|M|student|61801
360
+ 360|51|M|other|98027
361
+ 361|22|M|student|44074
362
+ 362|35|F|homemaker|85233
363
+ 363|20|M|student|87501
364
+ 364|63|M|engineer|01810
365
+ 365|29|M|lawyer|20009
366
+ 366|20|F|student|50670
367
+ 367|17|M|student|37411
368
+ 368|18|M|student|92113
369
+ 369|24|M|student|91335
370
+ 370|52|M|writer|08534
371
+ 371|36|M|engineer|99206
372
+ 372|25|F|student|66046
373
+ 373|24|F|other|55116
374
+ 374|36|M|executive|78746
375
+ 375|17|M|entertainment|37777
376
+ 376|28|F|other|10010
377
+ 377|22|M|student|18015
378
+ 378|35|M|student|02859
379
+ 379|44|M|programmer|98117
380
+ 380|32|M|engineer|55117
381
+ 381|33|M|artist|94608
382
+ 382|45|M|engineer|01824
383
+ 383|42|M|administrator|75204
384
+ 384|52|M|programmer|45218
385
+ 385|36|M|writer|10003
386
+ 386|36|M|salesman|43221
387
+ 387|33|M|entertainment|37412
388
+ 388|31|M|other|36106
389
+ 389|44|F|writer|83702
390
+ 390|42|F|writer|85016
391
+ 391|23|M|student|84604
392
+ 392|52|M|writer|59801
393
+ 393|19|M|student|83686
394
+ 394|25|M|administrator|96819
395
+ 395|43|M|other|44092
396
+ 396|57|M|engineer|94551
397
+ 397|17|M|student|27514
398
+ 398|40|M|other|60008
399
+ 399|25|M|other|92374
400
+ 400|33|F|administrator|78213
401
+ 401|46|F|healthcare|84107
402
+ 402|30|M|engineer|95129
403
+ 403|37|M|other|06811
404
+ 404|29|F|programmer|55108
405
+ 405|22|F|healthcare|10019
406
+ 406|52|M|educator|93109
407
+ 407|29|M|engineer|03261
408
+ 408|23|M|student|61755
409
+ 409|48|M|administrator|98225
410
+ 410|30|F|artist|94025
411
+ 411|34|M|educator|44691
412
+ 412|25|M|educator|15222
413
+ 413|55|M|educator|78212
414
+ 414|24|M|programmer|38115
415
+ 415|39|M|educator|85711
416
+ 416|20|F|student|92626
417
+ 417|27|F|other|48103
418
+ 418|55|F|none|21206
419
+ 419|37|M|lawyer|43215
420
+ 420|53|M|educator|02140
421
+ 421|38|F|programmer|55105
422
+ 422|26|M|entertainment|94533
423
+ 423|64|M|other|91606
424
+ 424|36|F|marketing|55422
425
+ 425|19|M|student|58644
426
+ 426|55|M|educator|01602
427
+ 427|51|M|doctor|85258
428
+ 428|28|M|student|55414
429
+ 429|27|M|student|29205
430
+ 430|38|M|scientist|98199
431
+ 431|24|M|marketing|92629
432
+ 432|22|M|entertainment|50311
433
+ 433|27|M|artist|11211
434
+ 434|16|F|student|49705
435
+ 435|24|M|engineer|60007
436
+ 436|30|F|administrator|17345
437
+ 437|27|F|other|20009
438
+ 438|51|F|administrator|43204
439
+ 439|23|F|administrator|20817
440
+ 440|30|M|other|48076
441
+ 441|50|M|technician|55013
442
+ 442|22|M|student|85282
443
+ 443|35|M|salesman|33308
444
+ 444|51|F|lawyer|53202
445
+ 445|21|M|writer|92653
446
+ 446|57|M|educator|60201
447
+ 447|30|M|administrator|55113
448
+ 448|23|M|entertainment|10021
449
+ 449|23|M|librarian|55021
450
+ 450|35|F|educator|11758
451
+ 451|16|M|student|48446
452
+ 452|35|M|administrator|28018
453
+ 453|18|M|student|06333
454
+ 454|57|M|other|97330
455
+ 455|48|M|administrator|83709
456
+ 456|24|M|technician|31820
457
+ 457|33|F|salesman|30011
458
+ 458|47|M|technician|Y1A6B
459
+ 459|22|M|student|29201
460
+ 460|44|F|other|60630
461
+ 461|15|M|student|98102
462
+ 462|19|F|student|02918
463
+ 463|48|F|healthcare|75218
464
+ 464|60|M|writer|94583
465
+ 465|32|M|other|05001
466
+ 466|22|M|student|90804
467
+ 467|29|M|engineer|91201
468
+ 468|28|M|engineer|02341
469
+ 469|60|M|educator|78628
470
+ 470|24|M|programmer|10021
471
+ 471|10|M|student|77459
472
+ 472|24|M|student|87544
473
+ 473|29|M|student|94708
474
+ 474|51|M|executive|93711
475
+ 475|30|M|programmer|75230
476
+ 476|28|M|student|60440
477
+ 477|23|F|student|02125
478
+ 478|29|M|other|10019
479
+ 479|30|M|educator|55409
480
+ 480|57|M|retired|98257
481
+ 481|73|M|retired|37771
482
+ 482|18|F|student|40256
483
+ 483|29|M|scientist|43212
484
+ 484|27|M|student|21208
485
+ 485|44|F|educator|95821
486
+ 486|39|M|educator|93101
487
+ 487|22|M|engineer|92121
488
+ 488|48|M|technician|21012
489
+ 489|55|M|other|45218
490
+ 490|29|F|artist|V5A2B
491
+ 491|43|F|writer|53711
492
+ 492|57|M|educator|94618
493
+ 493|22|M|engineer|60090
494
+ 494|38|F|administrator|49428
495
+ 495|29|M|engineer|03052
496
+ 496|21|F|student|55414
497
+ 497|20|M|student|50112
498
+ 498|26|M|writer|55408
499
+ 499|42|M|programmer|75006
500
+ 500|28|M|administrator|94305
501
+ 501|22|M|student|10025
502
+ 502|22|M|student|23092
503
+ 503|50|F|writer|27514
504
+ 504|40|F|writer|92115
505
+ 505|27|F|other|20657
506
+ 506|46|M|programmer|03869
507
+ 507|18|F|writer|28450
508
+ 508|27|M|marketing|19382
509
+ 509|23|M|administrator|10011
510
+ 510|34|M|other|98038
511
+ 511|22|M|student|21250
512
+ 512|29|M|other|20090
513
+ 513|43|M|administrator|26241
514
+ 514|27|M|programmer|20707
515
+ 515|53|M|marketing|49508
516
+ 516|53|F|librarian|10021
517
+ 517|24|M|student|55454
518
+ 518|49|F|writer|99709
519
+ 519|22|M|other|55320
520
+ 520|62|M|healthcare|12603
521
+ 521|19|M|student|02146
522
+ 522|36|M|engineer|55443
523
+ 523|50|F|administrator|04102
524
+ 524|56|M|educator|02159
525
+ 525|27|F|administrator|19711
526
+ 526|30|M|marketing|97124
527
+ 527|33|M|librarian|12180
528
+ 528|18|M|student|55104
529
+ 529|47|F|administrator|44224
530
+ 530|29|M|engineer|94040
531
+ 531|30|F|salesman|97408
532
+ 532|20|M|student|92705
533
+ 533|43|M|librarian|02324
534
+ 534|20|M|student|05464
535
+ 535|45|F|educator|80302
536
+ 536|38|M|engineer|30078
537
+ 537|36|M|engineer|22902
538
+ 538|31|M|scientist|21010
539
+ 539|53|F|administrator|80303
540
+ 540|28|M|engineer|91201
541
+ 541|19|F|student|84302
542
+ 542|21|M|student|60515
543
+ 543|33|M|scientist|95123
544
+ 544|44|F|other|29464
545
+ 545|27|M|technician|08052
546
+ 546|36|M|executive|22911
547
+ 547|50|M|educator|14534
548
+ 548|51|M|writer|95468
549
+ 549|42|M|scientist|45680
550
+ 550|16|F|student|95453
551
+ 551|25|M|programmer|55414
552
+ 552|45|M|other|68147
553
+ 553|58|M|educator|62901
554
+ 554|32|M|scientist|62901
555
+ 555|29|F|educator|23227
556
+ 556|35|F|educator|30606
557
+ 557|30|F|writer|11217
558
+ 558|56|F|writer|63132
559
+ 559|69|M|executive|10022
560
+ 560|32|M|student|10003
561
+ 561|23|M|engineer|60005
562
+ 562|54|F|administrator|20879
563
+ 563|39|F|librarian|32707
564
+ 564|65|M|retired|94591
565
+ 565|40|M|student|55422
566
+ 566|20|M|student|14627
567
+ 567|24|M|entertainment|10003
568
+ 568|39|M|educator|01915
569
+ 569|34|M|educator|91903
570
+ 570|26|M|educator|14627
571
+ 571|34|M|artist|01945
572
+ 572|51|M|educator|20003
573
+ 573|68|M|retired|48911
574
+ 574|56|M|educator|53188
575
+ 575|33|M|marketing|46032
576
+ 576|48|M|executive|98281
577
+ 577|36|F|student|77845
578
+ 578|31|M|administrator|M7A1A
579
+ 579|32|M|educator|48103
580
+ 580|16|M|student|17961
581
+ 581|37|M|other|94131
582
+ 582|17|M|student|93003
583
+ 583|44|M|engineer|29631
584
+ 584|25|M|student|27511
585
+ 585|69|M|librarian|98501
586
+ 586|20|M|student|79508
587
+ 587|26|M|other|14216
588
+ 588|18|F|student|93063
589
+ 589|21|M|lawyer|90034
590
+ 590|50|M|educator|82435
591
+ 591|57|F|librarian|92093
592
+ 592|18|M|student|97520
593
+ 593|31|F|educator|68767
594
+ 594|46|M|educator|M4J2K
595
+ 595|25|M|programmer|31909
596
+ 596|20|M|artist|77073
597
+ 597|23|M|other|84116
598
+ 598|40|F|marketing|43085
599
+ 599|22|F|student|R3T5K
600
+ 600|34|M|programmer|02320
601
+ 601|19|F|artist|99687
602
+ 602|47|F|other|34656
603
+ 603|21|M|programmer|47905
604
+ 604|39|M|educator|11787
605
+ 605|33|M|engineer|33716
606
+ 606|28|M|programmer|63044
607
+ 607|49|F|healthcare|02154
608
+ 608|22|M|other|10003
609
+ 609|13|F|student|55106
610
+ 610|22|M|student|21227
611
+ 611|46|M|librarian|77008
612
+ 612|36|M|educator|79070
613
+ 613|37|F|marketing|29678
614
+ 614|54|M|educator|80227
615
+ 615|38|M|educator|27705
616
+ 616|55|M|scientist|50613
617
+ 617|27|F|writer|11201
618
+ 618|15|F|student|44212
619
+ 619|17|M|student|44134
620
+ 620|18|F|writer|81648
621
+ 621|17|M|student|60402
622
+ 622|25|M|programmer|14850
623
+ 623|50|F|educator|60187
624
+ 624|19|M|student|30067
625
+ 625|27|M|programmer|20723
626
+ 626|23|M|scientist|19807
627
+ 627|24|M|engineer|08034
628
+ 628|13|M|none|94306
629
+ 629|46|F|other|44224
630
+ 630|26|F|healthcare|55408
631
+ 631|18|F|student|38866
632
+ 632|18|M|student|55454
633
+ 633|35|M|programmer|55414
634
+ 634|39|M|engineer|T8H1N
635
+ 635|22|M|other|23237
636
+ 636|47|M|educator|48043
637
+ 637|30|M|other|74101
638
+ 638|45|M|engineer|01940
639
+ 639|42|F|librarian|12065
640
+ 640|20|M|student|61801
641
+ 641|24|M|student|60626
642
+ 642|18|F|student|95521
643
+ 643|39|M|scientist|55122
644
+ 644|51|M|retired|63645
645
+ 645|27|M|programmer|53211
646
+ 646|17|F|student|51250
647
+ 647|40|M|educator|45810
648
+ 648|43|M|engineer|91351
649
+ 649|20|M|student|39762
650
+ 650|42|M|engineer|83814
651
+ 651|65|M|retired|02903
652
+ 652|35|M|other|22911
653
+ 653|31|M|executive|55105
654
+ 654|27|F|student|78739
655
+ 655|50|F|healthcare|60657
656
+ 656|48|M|educator|10314
657
+ 657|26|F|none|78704
658
+ 658|33|M|programmer|92626
659
+ 659|31|M|educator|54248
660
+ 660|26|M|student|77380
661
+ 661|28|M|programmer|98121
662
+ 662|55|M|librarian|19102
663
+ 663|26|M|other|19341
664
+ 664|30|M|engineer|94115
665
+ 665|25|M|administrator|55412
666
+ 666|44|M|administrator|61820
667
+ 667|35|M|librarian|01970
668
+ 668|29|F|writer|10016
669
+ 669|37|M|other|20009
670
+ 670|30|M|technician|21114
671
+ 671|21|M|programmer|91919
672
+ 672|54|F|administrator|90095
673
+ 673|51|M|educator|22906
674
+ 674|13|F|student|55337
675
+ 675|34|M|other|28814
676
+ 676|30|M|programmer|32712
677
+ 677|20|M|other|99835
678
+ 678|50|M|educator|61462
679
+ 679|20|F|student|54302
680
+ 680|33|M|lawyer|90405
681
+ 681|44|F|marketing|97208
682
+ 682|23|M|programmer|55128
683
+ 683|42|M|librarian|23509
684
+ 684|28|M|student|55414
685
+ 685|32|F|librarian|55409
686
+ 686|32|M|educator|26506
687
+ 687|31|F|healthcare|27713
688
+ 688|37|F|administrator|60476
689
+ 689|25|M|other|45439
690
+ 690|35|M|salesman|63304
691
+ 691|34|M|educator|60089
692
+ 692|34|M|engineer|18053
693
+ 693|43|F|healthcare|85210
694
+ 694|60|M|programmer|06365
695
+ 695|26|M|writer|38115
696
+ 696|55|M|other|94920
697
+ 697|25|M|other|77042
698
+ 698|28|F|programmer|06906
699
+ 699|44|M|other|96754
700
+ 700|17|M|student|76309
701
+ 701|51|F|librarian|56321
702
+ 702|37|M|other|89104
703
+ 703|26|M|educator|49512
704
+ 704|51|F|librarian|91105
705
+ 705|21|F|student|54494
706
+ 706|23|M|student|55454
707
+ 707|56|F|librarian|19146
708
+ 708|26|F|homemaker|96349
709
+ 709|21|M|other|N4T1A
710
+ 710|19|M|student|92020
711
+ 711|22|F|student|15203
712
+ 712|22|F|student|54901
713
+ 713|42|F|other|07204
714
+ 714|26|M|engineer|55343
715
+ 715|21|M|technician|91206
716
+ 716|36|F|administrator|44265
717
+ 717|24|M|technician|84105
718
+ 718|42|M|technician|64118
719
+ 719|37|F|other|V0R2H
720
+ 720|49|F|administrator|16506
721
+ 721|24|F|entertainment|11238
722
+ 722|50|F|homemaker|17331
723
+ 723|26|M|executive|94403
724
+ 724|31|M|executive|40243
725
+ 725|21|M|student|91711
726
+ 726|25|F|administrator|80538
727
+ 727|25|M|student|78741
728
+ 728|58|M|executive|94306
729
+ 729|19|M|student|56567
730
+ 730|31|F|scientist|32114
731
+ 731|41|F|educator|70403
732
+ 732|28|F|other|98405
733
+ 733|44|F|other|60630
734
+ 734|25|F|other|63108
735
+ 735|29|F|healthcare|85719
736
+ 736|48|F|writer|94618
737
+ 737|30|M|programmer|98072
738
+ 738|35|M|technician|95403
739
+ 739|35|M|technician|73162
740
+ 740|25|F|educator|22206
741
+ 741|25|M|writer|63108
742
+ 742|35|M|student|29210
743
+ 743|31|M|programmer|92660
744
+ 744|35|M|marketing|47024
745
+ 745|42|M|writer|55113
746
+ 746|25|M|engineer|19047
747
+ 747|19|M|other|93612
748
+ 748|28|M|administrator|94720
749
+ 749|33|M|other|80919
750
+ 750|28|M|administrator|32303
751
+ 751|24|F|other|90034
752
+ 752|60|M|retired|21201
753
+ 753|56|M|salesman|91206
754
+ 754|59|F|librarian|62901
755
+ 755|44|F|educator|97007
756
+ 756|30|F|none|90247
757
+ 757|26|M|student|55104
758
+ 758|27|M|student|53706
759
+ 759|20|F|student|68503
760
+ 760|35|F|other|14211
761
+ 761|17|M|student|97302
762
+ 762|32|M|administrator|95050
763
+ 763|27|M|scientist|02113
764
+ 764|27|F|educator|62903
765
+ 765|31|M|student|33066
766
+ 766|42|M|other|10960
767
+ 767|70|M|engineer|00000
768
+ 768|29|M|administrator|12866
769
+ 769|39|M|executive|06927
770
+ 770|28|M|student|14216
771
+ 771|26|M|student|15232
772
+ 772|50|M|writer|27105
773
+ 773|20|M|student|55414
774
+ 774|30|M|student|80027
775
+ 775|46|M|executive|90036
776
+ 776|30|M|librarian|51157
777
+ 777|63|M|programmer|01810
778
+ 778|34|M|student|01960
779
+ 779|31|M|student|K7L5J
780
+ 780|49|M|programmer|94560
781
+ 781|20|M|student|48825
782
+ 782|21|F|artist|33205
783
+ 783|30|M|marketing|77081
784
+ 784|47|M|administrator|91040
785
+ 785|32|M|engineer|23322
786
+ 786|36|F|engineer|01754
787
+ 787|18|F|student|98620
788
+ 788|51|M|administrator|05779
789
+ 789|29|M|other|55420
790
+ 790|27|M|technician|80913
791
+ 791|31|M|educator|20064
792
+ 792|40|M|programmer|12205
793
+ 793|22|M|student|85281
794
+ 794|32|M|educator|57197
795
+ 795|30|M|programmer|08610
796
+ 796|32|F|writer|33755
797
+ 797|44|F|other|62522
798
+ 798|40|F|writer|64131
799
+ 799|49|F|administrator|19716
800
+ 800|25|M|programmer|55337
801
+ 801|22|M|writer|92154
802
+ 802|35|M|administrator|34105
803
+ 803|70|M|administrator|78212
804
+ 804|39|M|educator|61820
805
+ 805|27|F|other|20009
806
+ 806|27|M|marketing|11217
807
+ 807|41|F|healthcare|93555
808
+ 808|45|M|salesman|90016
809
+ 809|50|F|marketing|30803
810
+ 810|55|F|other|80526
811
+ 811|40|F|educator|73013
812
+ 812|22|M|technician|76234
813
+ 813|14|F|student|02136
814
+ 814|30|M|other|12345
815
+ 815|32|M|other|28806
816
+ 816|34|M|other|20755
817
+ 817|19|M|student|60152
818
+ 818|28|M|librarian|27514
819
+ 819|59|M|administrator|40205
820
+ 820|22|M|student|37725
821
+ 821|37|M|engineer|77845
822
+ 822|29|F|librarian|53144
823
+ 823|27|M|artist|50322
824
+ 824|31|M|other|15017
825
+ 825|44|M|engineer|05452
826
+ 826|28|M|artist|77048
827
+ 827|23|F|engineer|80228
828
+ 828|28|M|librarian|85282
829
+ 829|48|M|writer|80209
830
+ 830|46|M|programmer|53066
831
+ 831|21|M|other|33765
832
+ 832|24|M|technician|77042
833
+ 833|34|M|writer|90019
834
+ 834|26|M|other|64153
835
+ 835|44|F|executive|11577
836
+ 836|44|M|artist|10018
837
+ 837|36|F|artist|55409
838
+ 838|23|M|student|01375
839
+ 839|38|F|entertainment|90814
840
+ 840|39|M|artist|55406
841
+ 841|45|M|doctor|47401
842
+ 842|40|M|writer|93055
843
+ 843|35|M|librarian|44212
844
+ 844|22|M|engineer|95662
845
+ 845|64|M|doctor|97405
846
+ 846|27|M|lawyer|47130
847
+ 847|29|M|student|55417
848
+ 848|46|M|engineer|02146
849
+ 849|15|F|student|25652
850
+ 850|34|M|technician|78390
851
+ 851|18|M|other|29646
852
+ 852|46|M|administrator|94086
853
+ 853|49|M|writer|40515
854
+ 854|29|F|student|55408
855
+ 855|53|M|librarian|04988
856
+ 856|43|F|marketing|97215
857
+ 857|35|F|administrator|V1G4L
858
+ 858|63|M|educator|09645
859
+ 859|18|F|other|06492
860
+ 860|70|F|retired|48322
861
+ 861|38|F|student|14085
862
+ 862|25|M|executive|13820
863
+ 863|17|M|student|60089
864
+ 864|27|M|programmer|63021
865
+ 865|25|M|artist|11231
866
+ 866|45|M|other|60302
867
+ 867|24|M|scientist|92507
868
+ 868|21|M|programmer|55303
869
+ 869|30|M|student|10025
870
+ 870|22|M|student|65203
871
+ 871|31|M|executive|44648
872
+ 872|19|F|student|74078
873
+ 873|48|F|administrator|33763
874
+ 874|36|M|scientist|37076
875
+ 875|24|F|student|35802
876
+ 876|41|M|other|20902
877
+ 877|30|M|other|77504
878
+ 878|50|F|educator|98027
879
+ 879|33|F|administrator|55337
880
+ 880|13|M|student|83702
881
+ 881|39|M|marketing|43017
882
+ 882|35|M|engineer|40503
883
+ 883|49|M|librarian|50266
884
+ 884|44|M|engineer|55337
885
+ 885|30|F|other|95316
886
+ 886|20|M|student|61820
887
+ 887|14|F|student|27249
888
+ 888|41|M|scientist|17036
889
+ 889|24|M|technician|78704
890
+ 890|32|M|student|97301
891
+ 891|51|F|administrator|03062
892
+ 892|36|M|other|45243
893
+ 893|25|M|student|95823
894
+ 894|47|M|educator|74075
895
+ 895|31|F|librarian|32301
896
+ 896|28|M|writer|91505
897
+ 897|30|M|other|33484
898
+ 898|23|M|homemaker|61755
899
+ 899|32|M|other|55116
900
+ 900|60|M|retired|18505
901
+ 901|38|M|executive|L1V3W
902
+ 902|45|F|artist|97203
903
+ 903|28|M|educator|20850
904
+ 904|17|F|student|61073
905
+ 905|27|M|other|30350
906
+ 906|45|M|librarian|70124
907
+ 907|25|F|other|80526
908
+ 908|44|F|librarian|68504
909
+ 909|50|F|educator|53171
910
+ 910|28|M|healthcare|29301
911
+ 911|37|F|writer|53210
912
+ 912|51|M|other|06512
913
+ 913|27|M|student|76201
914
+ 914|44|F|other|08105
915
+ 915|50|M|entertainment|60614
916
+ 916|27|M|engineer|N2L5N
917
+ 917|22|F|student|20006
918
+ 918|40|M|scientist|70116
919
+ 919|25|M|other|14216
920
+ 920|30|F|artist|90008
921
+ 921|20|F|student|98801
922
+ 922|29|F|administrator|21114
923
+ 923|21|M|student|E2E3R
924
+ 924|29|M|other|11753
925
+ 925|18|F|salesman|49036
926
+ 926|49|M|entertainment|01701
927
+ 927|23|M|programmer|55428
928
+ 928|21|M|student|55408
929
+ 929|44|M|scientist|53711
930
+ 930|28|F|scientist|07310
931
+ 931|60|M|educator|33556
932
+ 932|58|M|educator|06437
933
+ 933|28|M|student|48105
934
+ 934|61|M|engineer|22902
935
+ 935|42|M|doctor|66221
936
+ 936|24|M|other|32789
937
+ 937|48|M|educator|98072
938
+ 938|38|F|technician|55038
939
+ 939|26|F|student|33319
940
+ 940|32|M|administrator|02215
941
+ 941|20|M|student|97229
942
+ 942|48|F|librarian|78209
943
+ 943|22|M|student|77841
ml-100k/ml-100k/u1.base ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/u1.test ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/u2.base ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/u2.test ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/u3.base ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/u3.test ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/u4.base ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/u4.test ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/u5.base ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/u5.test ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/ua.base ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/ua.test ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/ub.base ADDED
The diff for this file is too large to render. See raw diff
 
ml-100k/ml-100k/ub.test ADDED
The diff for this file is too large to render. See raw diff