FKBaffour
commited on
Commit
•
1cef893
0
Parent(s):
Duplicate from FKBaffour/Gradio_Customer_Churn_Prediction_App
Browse files- .gitattributes +34 -0
- ML_items +0 -0
- README.md +13 -0
- app.py +125 -0
- requirements.txt +8 -0
.gitattributes
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
29 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
30 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
31 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
32 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
ML_items
ADDED
Binary file (35.1 kB). View file
|
|
README.md
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
title: Gradio Customer Churn Prediction App
|
3 |
+
emoji: 🏢
|
4 |
+
colorFrom: indigo
|
5 |
+
colorTo: purple
|
6 |
+
sdk: gradio
|
7 |
+
sdk_version: 3.15.0
|
8 |
+
app_file: app.py
|
9 |
+
pinned: false
|
10 |
+
duplicated_from: FKBaffour/Gradio_Customer_Churn_Prediction_App
|
11 |
+
---
|
12 |
+
|
13 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Importing required Libraries
|
2 |
+
from IPython.utils.py3compat import encode
|
3 |
+
import gradio as gr
|
4 |
+
import numpy as np
|
5 |
+
import pandas as pd
|
6 |
+
import pickle
|
7 |
+
|
8 |
+
|
9 |
+
# Loading Machine Learning Objects
|
10 |
+
def load_saved_objets(filepath='ML_items'):
|
11 |
+
"Function to load saved objects"
|
12 |
+
|
13 |
+
with open(filepath, 'rb') as file:
|
14 |
+
loaded_object = pickle.load(file)
|
15 |
+
|
16 |
+
return loaded_object
|
17 |
+
|
18 |
+
# Instantiating ML_items
|
19 |
+
loaded_object = load_saved_objets()
|
20 |
+
pipeline_of_my_app = loaded_object["pipeline"]
|
21 |
+
num_cols = loaded_object['numeric_columns']
|
22 |
+
cat_cols = loaded_object['categorical_columns']
|
23 |
+
encoder_categories = loaded_object["encoder_categories"]
|
24 |
+
|
25 |
+
# Main function to collect the inputs process them and outpuT the predicition
|
26 |
+
def predict_churn(
|
27 |
+
TotalCharges,
|
28 |
+
MonthlyCharges,
|
29 |
+
tenure,
|
30 |
+
StreamingTV,
|
31 |
+
PaperlessBilling,
|
32 |
+
DeviceProtection,
|
33 |
+
TechSupport,
|
34 |
+
InternetService,
|
35 |
+
OnlineSecurity,
|
36 |
+
StreamingMovies,
|
37 |
+
PaymentMethod,
|
38 |
+
Dependents,
|
39 |
+
Parter,
|
40 |
+
tenure_group,
|
41 |
+
OnlineBackup,
|
42 |
+
gender,
|
43 |
+
SeniorCitizen,
|
44 |
+
MultipleLines,
|
45 |
+
Contract,
|
46 |
+
PhoneService,
|
47 |
+
):
|
48 |
+
|
49 |
+
df = pd.DataFrame(
|
50 |
+
[
|
51 |
+
[
|
52 |
+
TotalCharges,
|
53 |
+
MonthlyCharges,
|
54 |
+
tenure,
|
55 |
+
StreamingTV,
|
56 |
+
PaperlessBilling,
|
57 |
+
DeviceProtection,
|
58 |
+
TechSupport,
|
59 |
+
InternetService,
|
60 |
+
OnlineSecurity,
|
61 |
+
StreamingMovies,
|
62 |
+
PaymentMethod,
|
63 |
+
Dependents,
|
64 |
+
Parter,
|
65 |
+
tenure_group,
|
66 |
+
OnlineBackup,
|
67 |
+
gender,
|
68 |
+
SeniorCitizen,
|
69 |
+
MultipleLines,
|
70 |
+
Contract,
|
71 |
+
PhoneService,
|
72 |
+
]
|
73 |
+
],
|
74 |
+
columns= num_cols + cat_cols,
|
75 |
+
).replace("", np.nan)
|
76 |
+
|
77 |
+
df[cat_cols] = df[cat_cols].astype("object")
|
78 |
+
|
79 |
+
# Passing data to pipeline to make prediction
|
80 |
+
output = pipeline_of_my_app.predict(df)
|
81 |
+
|
82 |
+
# Labelling Model output
|
83 |
+
if output == 0:
|
84 |
+
model_output = "No"
|
85 |
+
else:
|
86 |
+
model_output = "Yes"
|
87 |
+
|
88 |
+
return model_output
|
89 |
+
|
90 |
+
|
91 |
+
# Setting up app interface and data inputs
|
92 |
+
inputs = []
|
93 |
+
|
94 |
+
with gr.Blocks() as demo:
|
95 |
+
|
96 |
+
# Setting Titles for App
|
97 |
+
gr.Markdown("<h2 style='text-align: center;'> Customer Churn Prediction App </h2> ", unsafe_allow_html=True)
|
98 |
+
gr.Markdown("<h6 style='text-align: center;'> (Fill in the details below and click on PREDICT button to make a prediction for Customer Churn) </h6> ", unsafe_allow_html=True)
|
99 |
+
|
100 |
+
with gr.Column(): #main frame
|
101 |
+
|
102 |
+
with gr.Row(): #col 1 : for num features
|
103 |
+
|
104 |
+
for i in num_cols:
|
105 |
+
inputs.append(gr.Number(label=f"Input {i} "))
|
106 |
+
|
107 |
+
with gr.Row(): #col 2 : for cat features
|
108 |
+
|
109 |
+
for (lab, choices) in zip(cat_cols, encoder_categories):
|
110 |
+
inputs.append(gr.inputs.Dropdown(
|
111 |
+
choices=choices.tolist(),
|
112 |
+
type="value",
|
113 |
+
label=f"Select {lab}",
|
114 |
+
default=choices.tolist()[0],))
|
115 |
+
# Setting up preediction Button
|
116 |
+
with gr.Row():
|
117 |
+
make_prediction = gr.Button("Predict")
|
118 |
+
|
119 |
+
# Setting up prediction output row
|
120 |
+
with gr.Row():
|
121 |
+
output_prediction = gr.Text(label="Will Customer Churn?")
|
122 |
+
make_prediction.click(predict_churn, inputs, output_prediction)
|
123 |
+
|
124 |
+
# Launching app
|
125 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
IPython
|
3 |
+
pandas==1.4.2
|
4 |
+
numpy==1.21.5
|
5 |
+
seaborn==0.11.2
|
6 |
+
shap==0.41.0
|
7 |
+
gradio
|
8 |
+
scikit-learn==1.1.3
|