import torch | |
from utils import label_full_decoder | |
import sys | |
import dataset | |
import engine | |
from model import BERTBaseUncased | |
# from tokenizer import tokenizer | |
import config | |
from transformers import pipeline, AutoTokenizer, AutoModel | |
import gradio as gr | |
# DEVICE = config.device | |
# model = AutoModel.from_pretrained("thak123/bert-emoji-latvian-twitter-classifier") | |
# 7 EPOCH Version | |
# BERT_PATH = "FFZG-cleopatra/bert-emoji-latvian-twitter" | |
# tokenizer = transformers.BertTokenizer.from_pretrained( | |
# BERT_PATH, | |
# do_lower_case=True | |
# ) | |
#AutoTokenizer.from_pretrained("FFZG-cleopatra/bert-emoji-latvian-twitter") | |
# classifier = pipeline("sentiment-analysis", | |
# model= model, | |
# tokenizer = tokenizer) | |
# MODEL = BERTBaseUncased() | |
# MODEL.load_state_dict(torch.load(config.MODEL_PATH, map_location=torch.device(DEVICE))) | |
# MODEL.eval() | |
# T = tokenizer.TweetTokenizer( | |
# preserve_handles=True, preserve_hashes=True, preserve_case=False, preserve_url=False) | |
def preprocess(text): | |
tokens = T.tokenize(text) | |
print(tokens, file=sys.stderr) | |
ptokens = [] | |
for index, token in enumerate(tokens): | |
if "@" in token: | |
if index > 0: | |
# check if previous token was mention | |
if "@" in tokens[index-1]: | |
pass | |
else: | |
ptokens.append("mention_0") | |
else: | |
ptokens.append("mention_0") | |
else: | |
ptokens.append(token) | |
print(ptokens, file=sys.stderr) | |
return " ".join(ptokens) | |
def sentence_prediction(sentence): | |
# sentence = preprocess(sentence) | |
# model_path = config.MODEL_PATH | |
# test_dataset = dataset.BERTDataset( | |
# review=[sentence], | |
# target=[0] | |
# ) | |
# test_data_loader = torch.utils.data.DataLoader( | |
# test_dataset, | |
# batch_size=config.VALID_BATCH_SIZE, | |
# num_workers=3 | |
# ) | |
# device = config.device | |
model = BERTBaseUncased() | |
model.load_state_dict(torch.load( | |
model_path, map_location=torch.device(device))) | |
model.to(device) | |
outputs, [] = engine.predict_fn(test_data_loader, MODEL, device) | |
outputs = classifier(sentence) | |
print(outputs) | |
return outputs #{"label":outputs[0]} | |
demo = gr.Interface( | |
fn=sentence_prediction, | |
inputs='text', | |
outputs='label', | |
) | |
demo.launch() | |