|
|
|
import numpy as np |
|
import gradio as gr |
|
import os |
|
import pandas as pd |
|
from datasets import load_dataset |
|
from sklearn.metrics.pairwise import cosine_similarity |
|
|
|
import plotly.express as px |
|
Secret_token = os.getenv('token') |
|
|
|
dataset = load_dataset("FDSRashid/embed_matn") |
|
df = dataset["train"].to_pandas() |
|
taraf_max = np.max(df['taraf_ID'].unique()) |
|
|
|
def plot_similarity_score(taraf_num): |
|
embed_taraf = df[df['taraf_ID']== taraf_num]['embed'].to_list() |
|
cos_score = cosine_similarity(embed_taraf) |
|
fig = px.imshow(cos_score) |
|
fig.write_html("test1.html") |
|
return 'test1.html' |
|
|
|
with gr.Blocks() as demo: |
|
taraf_number = gr.Slider(1,taraf_max , value=10000, label="Taraf", info="Choose the Taraf to Input", step = 1) |
|
btn = gr.Button('Submit') |
|
btn.click(fn = plot_similarity_score, inputs = [taraf_number], outputs = [gr.HTML()]) |
|
demo.launch() |
|
|