FDSRashid's picture
Update app.py
a91aa86 verified
import numpy as np
import gradio as gr
import os
import pandas as pd
from datasets import load_dataset
from datasets import load_dataset
from datasets import Features
from datasets import Value
from datasets import Dataset
Secret_token = os.getenv('token')
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train')
dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'Taraf_Info.csv', token = Secret_token, split = 'train')
edge_info = dataset.to_pandas()
taraf_info = dataset2.to_pandas()
cities = taraf_info['City'].unique().tolist()
min_year = int(taraf_info['Year'].min())
max_year = int(taraf_info['Year'].max())
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string')})
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features )
narrator_bios = narrator_bios['train'].to_pandas()
narrator_bios.loc[49845, 'Narrator Rank'] = 'رسول الله'
narrator_bios.loc[49845, 'Number of Narrations'] = 0
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int)
narrator_bios.loc[49845, 'Number of Narrations'] = narrator_bios['Number of Narrations'].sum()
def subset_city_year(city, year1, year2):
if 'All' in city:
edges = taraf_info[(taraf_info['Year'] >= year1) & (taraf_info['Year'] <= year2)]
else:
edges = taraf_info[(taraf_info['Year'] >= year1) & (taraf_info['City'].isin(city)) & (taraf_info['Year'] <= year2)]
return edges
def subset_year(year = 50):
edges = taraf_info[(taraf_info['Year'] == year)]
return edges
def splitIsnad(dataframe):
teacher_student =dataframe['Edge_Name'].str.split(' TO ')
dataframe['Teacher'] = teacher_student.apply(lambda x: x[0])
dataframe['Student'] = teacher_student.apply(lambda x: x[1])
return dataframe
def get_narrators( city , year1, year2):
try:
df = subset_city_year(city, year1, year2)
narrators = edge_info[edge_info['Edge_ID'].isin(df['ID'])]
fixed = splitIsnad(narrators)
fixed['Teacher Reports'] = fixed['Teacher_ID'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID']== x]['Number of Narrations'].to_list()[0])
fixed['Student Reports'] = fixed['Student_ID'].apply(lambda x: narrator_bios[narrator_bios['Rawi ID']== x]['Number of Narrations'].to_list()[0])
return fixed[['Teacher', 'Student', 'Teacher Reports', 'Student Reports', 'Isnads', 'Hadiths', 'Tarafs', 'Books']]
except Exception as e:
return str(e)
with gr.Blocks() as demo:
Places = gr.Dropdown(choices = cities + ['All'], value = ['المدينه', 'بغداد', 'كوفة', 'بصرة'], multiselect=True, label = 'Location')
First_Year = gr.Slider(min_year, max_year, value = 10, label = 'Begining', info = 'Choose the first year to display Narrators')
Last_Year = gr.Slider(min_year, max_year, value = 50, label = 'End', info = 'Choose the Last year to display Narrators')
btn = gr.Button('Submit')
btn.click(fn = get_narrators, inputs = [Places, First_Year, Last_Year], outputs = gr.DataFrame())
demo.launch()