|
import gradio as gr |
|
from pyvis.network import Network |
|
|
|
import numpy as np |
|
import pandas as pd |
|
import os |
|
from datasets import load_dataset |
|
from datasets import Features |
|
from datasets import Value |
|
from datasets import Dataset |
|
import matplotlib.pyplot as plt |
|
|
|
|
|
|
|
Secret_token = os.getenv('HF_Token') |
|
|
|
dataset = load_dataset('FDSRashid/hadith_info',data_files = 'Basic_Edge_Information.csv', token = Secret_token, split = 'train') |
|
dataset2 = load_dataset('FDSRashid/hadith_info',data_files = 'Taraf_Info.csv', token = Secret_token, split = 'train') |
|
|
|
|
|
|
|
features = Features({'Rawi ID': Value('int32'), 'Famous Name': Value('string'), 'Narrator Rank': Value('string'), 'Number of Narrations': Value('string'), 'Official Name':Value('string'), 'Title Name':Value('string'), 'Generation': Value('string')} ) |
|
narrator_bios = load_dataset("FDSRashid/hadith_info", data_files = 'Teacher_Bios.csv', token = Secret_token,features=features ) |
|
narrator_bios = narrator_bios['train'].to_pandas() |
|
narrator_bios.loc[49845, 'Narrator Rank'] = 'ุฑุณูู ุงููู' |
|
narrator_bios.loc[49845, 'Number of Narrations'] = 0 |
|
narrator_bios['Number of Narrations'] = narrator_bios['Number of Narrations'].astype(int) |
|
narrator_bios.loc[49845, 'Number of Narrations'] = 327512 |
|
narrator_bios['Generation'] = narrator_bios['Generation'].replace([None], [-1]) |
|
narrator_bios['Generation'] = narrator_bios['Generation'].astype(int) |
|
|
|
|
|
|
|
edge_info = dataset.to_pandas() |
|
taraf_info = dataset2.to_pandas() |
|
min_year = int(taraf_info['Year'].min()) |
|
max_year = int(taraf_info['Year'].max()) |
|
cmap = plt.colormaps['cool'] |
|
def value_to_hex(value): |
|
rgba_color = cmap(value) |
|
return "#{:02X}{:02X}{:02X}".format(int(rgba_color[0] * 255), int(rgba_color[1] * 255), int(rgba_color[2] * 255)) |
|
|
|
def subsetEdges(fstyear, lstyear): |
|
info = taraf_info[(taraf_info['Year'] >= fstyear)& (taraf_info['Year'] <= lstyear)] |
|
narrators = edge_info[edge_info['Edge_ID'].isin(info['ID'].unique())] |
|
return narrators |
|
def splitIsnad(dataframe): |
|
teacher_student =dataframe['Edge_Name'].str.split(' TO ') |
|
dataframe['Teacher'] = teacher_student.apply(lambda x: x[0]) |
|
dataframe['Student'] = teacher_student.apply(lambda x: x[1]) |
|
return dataframe |
|
|
|
|
|
def network_narrator(narrator_id, fst_year, lst_year, yaxis): |
|
edges = subsetEdges(fst_year, lst_year) |
|
edges_single = edges[(edges['Teacher_ID']==narrator_id) | (edges['Student_ID']==narrator_id)] |
|
edges_prepped = splitIsnad(edges_single) |
|
net = Network(directed =True) |
|
for _, row in edges_prepped.iterrows(): |
|
source = row['Teacher'] |
|
target = row['Student'] |
|
attribute_value = row[yaxis] |
|
edge_color = value_to_hex(attribute_value) |
|
teacher_info = narrator_bios[narrator_bios['Rawi ID'] == row['Teacher_ID']] |
|
student_info = narrator_bios[narrator_bios['Rawi ID'] == row['Student_ID']] |
|
teacher_narrations = teacher_info['Number of Narrations'].to_list()[0] |
|
student_narrations = student_info['Number of Narrations'].to_list()[0] |
|
net.add_node(source, color=value_to_hex(teacher_narrations), font = {'size':30, 'color': 'orange'}, label = f"{source}\n{teacher_narrations}") |
|
net.add_node(target, color=value_to_hex(student_narrations), font = {'size': 20, 'color': 'red'}, label = f"{target}\n{student_narrations}") |
|
net.add_edge(source, target, color=edge_color, value=attribute_value, label = f"{yaxis}:{attribute_value}") |
|
|
|
|
|
net.barnes_hut(gravity=-3000, central_gravity=0.3, spring_length=200) |
|
html = net.generate_html() |
|
html = html.replace("'", "\"") |
|
|
|
return f"""<iframe style="width: 100%; height: 600px;margin:0 auto" name="result" allow="midi; geolocation; microphone; camera; |
|
display-capture; encrypted-media;" sandbox="allow-modals allow-forms |
|
allow-scripts allow-same-origin allow-popups |
|
allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" |
|
allowpaymentrequest="" frameborder="0" srcdoc='{html}'></iframe>""", edges_prepped[['Teacher', 'Student', 'Tarafs', 'Hadiths', 'Isnads', 'Books']] |
|
|
|
def narrator_retriever(name): |
|
return narrator_bios[(narrator_bios['Official Name'].str.contains(name)) | (narrator_bios['Famous Name'].str.contains(name)) | (narrator_bios['Rawi ID'].astype(str) == name)][['Rawi ID', 'Title Name', 'Official Name', 'Famous Name', 'Number of Narrations', 'Narrator Rank', 'Generation' ]] |
|
|
|
|
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("Search Narrators using this tool or Visualize Network of a Narrator") |
|
with gr.Tab("Search Narrator"): |
|
text_input = gr.Textbox() |
|
text_output = gr.DataFrame() |
|
text_button = gr.Button("Search") |
|
text_button.click(narrator_retriever, inputs=text_input, outputs=text_output) |
|
with gr.Tab("Visualize Network"): |
|
with gr.Row(): |
|
image_input = gr.Number() |
|
FirstYear = gr.Slider(min_year, max_year, value = -11, label = 'Begining', info = 'Choose the first year to display Narrators') |
|
Last_Year = gr.Slider(min_year, max_year, value = 9, label = 'End', info = 'Choose the last year to display Narrators') |
|
Yaxis = gr.Dropdown(choices = ['Tarafs', 'Hadiths', 'Isnads', 'Books'], value = 'Tarafs', label = 'Variable to Display', info = 'Choose the variable to visualize.') |
|
image_output = gr.HTML() |
|
image_button = gr.Button("Visualize!") |
|
image_button.click(network_narrator, inputs=[image_input, FirstYear, Last_Year, Yaxis], outputs=[image_output, gr.DataFrame()]) |
|
|
|
|
|
|
|
|
|
demo.launch() |
|
|
|
|