Ezi Ozoani commited on
Commit
516fb17
·
1 Parent(s): f6b562f

app inference complete

Browse files
Files changed (2) hide show
  1. app.py +33 -78
  2. requirements.txt +1 -1
app.py CHANGED
@@ -1,10 +1,8 @@
1
  import streamlit as st
2
  from pathlib import Path
3
  import base64
4
- #
5
- #import robustnessgym as rg
6
- from PIL import Image
7
-
8
 
9
 
10
  # Initial page config
@@ -31,9 +29,13 @@ def img_to_bytes(img_path):
31
 
32
  # sidebar
33
 
34
- #def load_model():
35
- # model_out = pipeline(task="text-generation", model="distilgpt2")
36
- #return model_out
 
 
 
 
37
 
38
  def cs_sidebar():
39
 
@@ -167,56 +169,6 @@ OpenAI states in the GPT-2 [model card](https://github.com/openai/gpt-2/blob/mas
167
 
168
  ''')
169
 
170
- # How to Get Started
171
-
172
- col1.subheader('How to Get Started')
173
- with col1.expander(""):
174
- st.markdown('''
175
-
176
-
177
-
178
- *Be sure to read the sections on in-scope and out-of-scope uses and limitations of the model for further information on how to use the model.*
179
-
180
- Using DistilGPT2 is similar to using GPT-2. DistilGPT2 can be used directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility:
181
-
182
- ```python
183
- >>> from transformers import pipeline, set_seed
184
- >>> generator = pipeline('text-generation', model='distilgpt2')
185
- >>> set_seed(42)
186
- >>> generator("Hello, I'm a language model", max_length=20, num_return_sequences=5)
187
- Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.
188
- [{'generated_text': "Hello, I'm a language model, I'm a language model. In my previous post I've"},
189
- {'generated_text': "Hello, I'm a language model, and I'd love to hear what you think about it."},
190
- {'generated_text': "Hello, I'm a language model, but I don't get much of a connection anymore, so"},
191
- {'generated_text': "Hello, I'm a language model, a functional language... It's not an example, and that"},
192
- {'generated_text': "Hello, I'm a language model, not an object model.\n\nIn a nutshell, I"}]
193
- ```
194
-
195
-
196
- **Here is how to use this model to get the features of a given text in PyTorch**:
197
-
198
- ```python
199
- from transformers import GPT2Tokenizer, GPT2Model
200
- tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
201
- model = GPT2Model.from_pretrained('distilgpt2')
202
- text = "Replace me by any text you'd like."
203
- encoded_input = tokenizer(text, return_tensors='pt')
204
- output = model(**encoded_input)
205
- ```
206
-
207
- **And in TensorFlow:**
208
-
209
- ```python
210
- from transformers import GPT2Tokenizer, TFGPT2Model
211
- tokenizer = GPT2Tokenizer.from_pretrained('distilgpt2')
212
- model = TFGPT2Model.from_pretrained('distilgpt2')
213
- text = "Replace me by any text you'd like."
214
- encoded_input = tokenizer(text, return_tensors='tf')
215
- output = model(encoded_input)
216
- ```
217
-
218
- ''')
219
-
220
 
221
  # Training Data
222
 
@@ -274,17 +226,16 @@ GPT-2 reaches a perplexity on the test set of 16.3 compared to 21.1 for DistilGP
274
 
275
  ''')
276
 
277
-
278
-
279
- # Try App
280
-
281
- col2.header('Try App')
282
- col2.code('''[To:do add integration with HF
283
- ''')
284
 
285
  # How to Get Started
286
 
287
- with col2.header('How to Get Started'):
288
  col2.markdown('''
289
  *Be sure to read the sections on in-scope and out-of-scope uses and limitations of the model for further information on how to use the model.*
290
  ''')
@@ -331,23 +282,27 @@ output = model(encoded_input)
331
 
332
  ''')
333
 
334
- # Visuals
335
 
 
336
 
 
 
 
 
 
 
 
 
 
 
 
337
 
 
338
 
339
-
340
-
341
- #pipeline = pipeline(task="image-classification", model="julien-c/hotdog-not-hotdog")
342
-
343
- # Placeholders, help, and options
344
-
345
- col2.subheader('Placeholders, help, and anything else')
346
- #pipeline = load_model()
347
-
348
- col2.code('''
349
-
350
- ''')
351
 
352
 
353
 
 
1
  import streamlit as st
2
  from pathlib import Path
3
  import base64
4
+ from transformers import pipeline, set_seed
5
+ from huggingface_hub.inference_api import InferenceApi
 
 
6
 
7
 
8
  # Initial page config
 
29
 
30
  # sidebar
31
 
32
+ def load_model():
33
+ generator = pipeline('text-generation', model='distilgpt2')
34
+ set_seed(48)
35
+ text = st.text_input('Provide an initial text prompt')
36
+
37
+ if text != '' :
38
+ out = generator(text, max_length=30, num_return_sequences=1)
39
 
40
  def cs_sidebar():
41
 
 
169
 
170
  ''')
171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
 
173
  # Training Data
174
 
 
226
 
227
  ''')
228
 
229
+
230
+ ################################
231
+ ## Column 2: right most column
232
+ ################################
233
+
234
+
 
235
 
236
  # How to Get Started
237
 
238
+ with col2.subheader('How to Get Started'):
239
  col2.markdown('''
240
  *Be sure to read the sections on in-scope and out-of-scope uses and limitations of the model for further information on how to use the model.*
241
  ''')
 
282
 
283
  ''')
284
 
 
285
 
286
+ # Try App
287
 
288
+ col2.header('Try out DistilGP2')
289
+ #print load_model()
290
+ with col2.subheader(''):
291
+ generator = pipeline('text-generation', model='distilgpt2')
292
+ set_seed(48)
293
+ text = st.text_input('Text Generation: Provide an initial text prompt')
294
+ if text != '' :
295
+ out = generator(text, max_length=30, num_return_sequences=1)
296
+ col2.write(out)
297
+
298
+
299
 
300
+ # Contact Section
301
 
302
+ with col2.header('Further Contact'):
303
+ url = "https://huggingface.co/spaces/Ezi/ModelCardsAnalysis/discussions"
304
+ col2.markdown("Further contact, input and/or questions are welcomed 🤗 [here](%s)" % url)
305
+
 
 
 
 
 
 
 
 
306
 
307
 
308
 
requirements.txt CHANGED
@@ -1,3 +1,3 @@
1
  transformers
2
  torch
3
- transformers-interpret
 
1
  transformers
2
  torch
3
+ transformers-interpret