Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
def load_data(): | |
try: | |
df = pd.read_csv('data/music_data.csv', on_bad_lines='skip') | |
st.write("**Raw Data Sample:**", df.head()) # Display raw data | |
except FileNotFoundError: | |
st.error("Error: 'data/music_data.csv' not found. Please ensure the file exists.") | |
return pd.DataFrame() | |
except Exception as e: | |
st.error(f"Error loading raw data: {e}") | |
return pd.DataFrame() | |
if df.empty: | |
st.warning("Warning: Loaded DataFrame is empty. Check the CSV content.") | |
return df | |
if 'Album Release Date' not in df.columns: | |
st.error("'Album Release Date' column missing from CSV") | |
return df | |
df['Year'] = pd.to_datetime(df['Album Release Date'], errors='coerce').dt.year | |
df['Year'] = df['Year'].fillna(0).astype(int) | |
df['Decade'] = (df['Year'] // 10 * 10).astype(int) | |
df['Genres'] = df['Artist Genres'].fillna('Unknown').str.split(',').apply(lambda x: [g.strip() for g in x]) | |
df['Popularity'] = pd.to_numeric(df['Popularity'], errors='coerce').fillna(0) | |
if 'Decade' not in df.columns: | |
st.error("Failed to create 'Decade' column") | |
return df | |
st.write("**Processed Data Sample:**", df[['Track Name', 'Year', 'Decade', 'Popularity']].head()) | |
return df |