Upload 24 files
Browse files- app.py +323 -0
- outputs/.DS_Store +0 -0
- outputs/collatz_tree.png +0 -0
- outputs/minimal_subtree.png +0 -0
- requirements.txt +17 -0
- src/.DS_Store +0 -0
- src/__init__.py +0 -0
- src/__pycache__/__init__.cpython-312.pyc +0 -0
- src/__pycache__/utils.cpython-312.pyc +0 -0
- src/collatz/.DS_Store +0 -0
- src/collatz/__init__.py +0 -0
- src/collatz/__pycache__/__init__.cpython-312.pyc +0 -0
- src/collatz/__pycache__/inverse_tree.cpython-312.pyc +0 -0
- src/collatz/__pycache__/metrics.cpython-312.pyc +0 -0
- src/collatz/__pycache__/minimal_subtree.cpython-312.pyc +0 -0
- src/collatz/inverse_tree.py +94 -0
- src/collatz/metrics.py +101 -0
- src/collatz/minimal_subtree.py +253 -0
- src/utils.py +121 -0
- src/visual/.DS_Store +0 -0
- src/visual/__init__.py +0 -0
- src/visual/__pycache__/__init__.cpython-312.pyc +0 -0
- src/visual/__pycache__/render.cpython-312.pyc +0 -0
- src/visual/render.py +210 -0
app.py
ADDED
|
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Hugging Face / local Gradio app for exploring Collatz structures.
|
| 3 |
+
|
| 4 |
+
Row 1:
|
| 5 |
+
- Inverse tree controls
|
| 6 |
+
- Minimal subtree controls
|
| 7 |
+
- Statistics for the currently displayed graph
|
| 8 |
+
|
| 9 |
+
Row 2:
|
| 10 |
+
- Image display area (Zoom & Scroll or Fit to Width)
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
from __future__ import annotations
|
| 14 |
+
import io
|
| 15 |
+
import matplotlib.pyplot as plt
|
| 16 |
+
|
| 17 |
+
from typing import Any
|
| 18 |
+
from pathlib import Path
|
| 19 |
+
import base64
|
| 20 |
+
|
| 21 |
+
import gradio as gr
|
| 22 |
+
|
| 23 |
+
from src.utils import (
|
| 24 |
+
build_and_render_collatz_tree,
|
| 25 |
+
build_and_render_minimal_subtree,
|
| 26 |
+
safe_int,
|
| 27 |
+
)
|
| 28 |
+
from src.collatz.metrics import compute_basic_graph_stats, format_stats_markdown
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
# ============================================================
|
| 32 |
+
# Helpers
|
| 33 |
+
# ============================================================
|
| 34 |
+
|
| 35 |
+
def image_file_to_html(
|
| 36 |
+
path: str,
|
| 37 |
+
mode: str = "Zoom & Scroll",
|
| 38 |
+
box_height: int = 650,
|
| 39 |
+
) -> str:
|
| 40 |
+
"""
|
| 41 |
+
Convert an image file into an HTML block.
|
| 42 |
+
|
| 43 |
+
Modes:
|
| 44 |
+
- "Zoom & Scroll": full resolution inside fixed-height scroll-box
|
| 45 |
+
- "Fit to Width" : scaled to column width, whole graph visible
|
| 46 |
+
"""
|
| 47 |
+
img_path = Path(path)
|
| 48 |
+
if not img_path.is_file():
|
| 49 |
+
return "<p style='color:red;'>Error: image file not found.</p>"
|
| 50 |
+
|
| 51 |
+
data = img_path.read_bytes()
|
| 52 |
+
encoded = base64.b64encode(data).decode("ascii")
|
| 53 |
+
|
| 54 |
+
if mode == "Fit to Width":
|
| 55 |
+
# Show whole graph scaled to container width
|
| 56 |
+
html = f"""
|
| 57 |
+
<div style="
|
| 58 |
+
border:1px solid #ddd;
|
| 59 |
+
border-radius:6px;
|
| 60 |
+
padding:4px;
|
| 61 |
+
background-color:#fafafa;
|
| 62 |
+
">
|
| 63 |
+
<img src="data:image/png;base64,{encoded}"
|
| 64 |
+
style="display:block; max-width:100%; height:auto; margin:0 auto;" />
|
| 65 |
+
</div>
|
| 66 |
+
"""
|
| 67 |
+
else:
|
| 68 |
+
# Zoom & scroll (full resolution)
|
| 69 |
+
html = f"""
|
| 70 |
+
<div style="
|
| 71 |
+
display:flex;
|
| 72 |
+
justify-content:center;
|
| 73 |
+
width:100%;
|
| 74 |
+
">
|
| 75 |
+
<div style="
|
| 76 |
+
height:{box_height}px;
|
| 77 |
+
overflow:auto;
|
| 78 |
+
border:1px solid #ddd;
|
| 79 |
+
border-radius:6px;
|
| 80 |
+
padding:4px;
|
| 81 |
+
background-color:#fafafa;
|
| 82 |
+
width:fit-content;
|
| 83 |
+
max-width:100%;
|
| 84 |
+
">
|
| 85 |
+
<img src="data:image/png;base64,{encoded}"
|
| 86 |
+
style="display:block; max-width:none; max-height:none;" />
|
| 87 |
+
</div>
|
| 88 |
+
</div>
|
| 89 |
+
"""
|
| 90 |
+
|
| 91 |
+
return html
|
| 92 |
+
|
| 93 |
+
def parity_histogram_html(stats: dict) -> str:
|
| 94 |
+
"""
|
| 95 |
+
Create a small odd vs even histogram as an embedded PNG <img> tag.
|
| 96 |
+
"""
|
| 97 |
+
num_odd = stats.get("num_odd", 0)
|
| 98 |
+
num_even = stats.get("num_even", 0)
|
| 99 |
+
|
| 100 |
+
# If no nodes, nothing to plot
|
| 101 |
+
if num_odd == 0 and num_even == 0:
|
| 102 |
+
return "<p>_No nodes to plot._</p>"
|
| 103 |
+
|
| 104 |
+
labels = ["Odd", "Even"]
|
| 105 |
+
values = [num_odd, num_even]
|
| 106 |
+
|
| 107 |
+
fig, ax = plt.subplots(figsize=(3.5, 2.5))
|
| 108 |
+
ax.bar(labels, values)
|
| 109 |
+
ax.set_ylabel("Count")
|
| 110 |
+
ax.set_title("Odd vs Even Nodes")
|
| 111 |
+
fig.tight_layout()
|
| 112 |
+
|
| 113 |
+
buf = io.BytesIO()
|
| 114 |
+
fig.savefig(buf, format="png")
|
| 115 |
+
plt.close(fig)
|
| 116 |
+
encoded = base64.b64encode(buf.getvalue()).decode("ascii")
|
| 117 |
+
|
| 118 |
+
return f'<img src="data:image/png;base64,{encoded}" style="max-width:100%; height:auto;" />'
|
| 119 |
+
|
| 120 |
+
# ============================================================
|
| 121 |
+
# Callbacks
|
| 122 |
+
# ============================================================
|
| 123 |
+
|
| 124 |
+
def inverse_tree_callback(
|
| 125 |
+
backbone_length: Any,
|
| 126 |
+
branch_length: Any,
|
| 127 |
+
max_depth: Any,
|
| 128 |
+
view_mode: str,
|
| 129 |
+
):
|
| 130 |
+
"""
|
| 131 |
+
Generate the inverse structural tree and return (image_html, stats_md).
|
| 132 |
+
"""
|
| 133 |
+
|
| 134 |
+
b_len = safe_int(backbone_length, default=8)
|
| 135 |
+
r_len = safe_int(branch_length, default=4)
|
| 136 |
+
depth = safe_int(max_depth, default=2)
|
| 137 |
+
|
| 138 |
+
# clamp for demo
|
| 139 |
+
b_len = max(4, min(b_len, 10))
|
| 140 |
+
r_len = max(1, min(r_len, 7))
|
| 141 |
+
depth = max(0, min(depth, 4))
|
| 142 |
+
|
| 143 |
+
image_path, df_edges = build_and_render_collatz_tree(
|
| 144 |
+
backbone_length=b_len,
|
| 145 |
+
branch_length=r_len,
|
| 146 |
+
max_depth=depth,
|
| 147 |
+
return_edges=True,
|
| 148 |
+
)
|
| 149 |
+
|
| 150 |
+
html_block = image_file_to_html(image_path, view_mode, 650)
|
| 151 |
+
|
| 152 |
+
stats = compute_basic_graph_stats(df_edges)
|
| 153 |
+
stats_md = format_stats_markdown(stats)
|
| 154 |
+
|
| 155 |
+
hist_html = parity_histogram_html(stats)
|
| 156 |
+
|
| 157 |
+
return html_block, stats_md, hist_html
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def minimal_subtree_callback(
|
| 161 |
+
N: Any,
|
| 162 |
+
view_mode: str,
|
| 163 |
+
):
|
| 164 |
+
"""
|
| 165 |
+
Generate the minimal subtree up to N and return (image_html, stats_md).
|
| 166 |
+
"""
|
| 167 |
+
|
| 168 |
+
N = safe_int(N, default=7)
|
| 169 |
+
# Cap N for demo to prevent huge graphs
|
| 170 |
+
N = max(1, min(N, 2000))
|
| 171 |
+
|
| 172 |
+
image_path, df_edges = build_and_render_minimal_subtree(
|
| 173 |
+
N,
|
| 174 |
+
return_edges=True,
|
| 175 |
+
filename=f"minimal_subtree",
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
html_block = image_file_to_html(image_path, view_mode, 650)
|
| 179 |
+
|
| 180 |
+
stats = compute_basic_graph_stats(df_edges)
|
| 181 |
+
stats_md = format_stats_markdown(stats)
|
| 182 |
+
hist_html = parity_histogram_html(stats)
|
| 183 |
+
|
| 184 |
+
return html_block, stats_md, hist_html
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
# ============================================================
|
| 188 |
+
# Build UI
|
| 189 |
+
# ============================================================
|
| 190 |
+
|
| 191 |
+
def build_demo() -> gr.Blocks:
|
| 192 |
+
|
| 193 |
+
with gr.Blocks(title="Collatz Explorer") as demo:
|
| 194 |
+
|
| 195 |
+
gr.Markdown(
|
| 196 |
+
"""
|
| 197 |
+
<h1 style="text-align:center; margin-bottom:20px;">
|
| 198 |
+
🔷 <span style="font-weight:700;">Collatz Structural Explorer</span> 🔷
|
| 199 |
+
</h1>
|
| 200 |
+
|
| 201 |
+
<div style="text-align:justify;">
|
| 202 |
+
|
| 203 |
+
<div style="margin-left:20px; margin-bottom:15px;">
|
| 204 |
+
The <em>Collatz Structural Explorer</em> accompanies the research article
|
| 205 |
+
<a href="https://www.tandfonline.com/doi/full/10.1080/27684830.2025.2542052" target="_blank" style="color:#1a73e8; text-decoration:none; font-weight:600;">
|
| 206 |
+
Unfolding the Collatz Tree: An Indirect Structural Proof of the Collatz Conjecture
|
| 207 |
+
</a>, published in the <em>Journal of Experimental Mathematics</em> (Taylor and Francis).
|
| 208 |
+
This interactive demonstration is intended to visually illustrate key structural ideas from the paper using a dynamic inverse-tree perspective.
|
| 209 |
+
</div>
|
| 210 |
+
|
| 211 |
+
<div style="margin-left:20px;">
|
| 212 |
+
It highlights how the inverse Collatz map, structural branch rules, and the minimal subtree containing all natural numbers up to a chosen bound N collectively reconstruct the forward Collatz dynamics in an organized and interpretable way.
|
| 213 |
+
Through real-time visualization and graph statistics, readers can explore the hierarchical structure of the Collatz process and gain an intuitive understanding of the theoretical insights developed in the publication.
|
| 214 |
+
</div>
|
| 215 |
+
|
| 216 |
+
</div>
|
| 217 |
+
<div style="height:50px;"></div>
|
| 218 |
+
"""
|
| 219 |
+
)
|
| 220 |
+
|
| 221 |
+
# ============================
|
| 222 |
+
# Row 1: controls + stats
|
| 223 |
+
# ============================
|
| 224 |
+
with gr.Row():
|
| 225 |
+
# Inverse tree controls
|
| 226 |
+
with gr.Column(scale=1, min_width=260):
|
| 227 |
+
gr.Markdown("### Inverse Collatz Tree")
|
| 228 |
+
|
| 229 |
+
backbone_input = gr.Slider(
|
| 230 |
+
4, 10, value=8, step=1,
|
| 231 |
+
label="Backbone length (powers of 2)",
|
| 232 |
+
)
|
| 233 |
+
branch_input = gr.Slider(
|
| 234 |
+
1, 7, value=4, step=1,
|
| 235 |
+
label="Branch length",
|
| 236 |
+
)
|
| 237 |
+
depth_input = gr.Slider(
|
| 238 |
+
0, 4, value=2, step=1,
|
| 239 |
+
label="Branch recursion depth",
|
| 240 |
+
)
|
| 241 |
+
|
| 242 |
+
view_mode_inverse = gr.Radio(
|
| 243 |
+
["Zoom & Scroll", "Fit to Width"],
|
| 244 |
+
value="Zoom & Scroll",
|
| 245 |
+
label="View mode for inverse tree",
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
gen_inverse = gr.Button("Generate Inverse Tree")
|
| 249 |
+
|
| 250 |
+
# Minimal subtree controls
|
| 251 |
+
with gr.Column(scale=1, min_width=260):
|
| 252 |
+
gr.Markdown("### Minimal Subtree up to N")
|
| 253 |
+
|
| 254 |
+
N_input = gr.Number(
|
| 255 |
+
value=7, precision=0,
|
| 256 |
+
label="Upper bound N (includes all 1..N)",
|
| 257 |
+
info="Demo max = 2000",
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
view_mode_minimal = gr.Radio(
|
| 261 |
+
["Zoom & Scroll", "Fit to Width"],
|
| 262 |
+
value="Zoom & Scroll",
|
| 263 |
+
label="View mode for minimal subtree",
|
| 264 |
+
)
|
| 265 |
+
|
| 266 |
+
gen_minimal = gr.Button("Generate Minimal Subtree")
|
| 267 |
+
|
| 268 |
+
# Stats panel
|
| 269 |
+
# Stats + histogram (side by side)
|
| 270 |
+
with gr.Column(scale=1):
|
| 271 |
+
gr.Markdown("### Current Graph Statistics")
|
| 272 |
+
|
| 273 |
+
with gr.Row():
|
| 274 |
+
# Column for text statistics
|
| 275 |
+
with gr.Column(scale=2, min_width=140):
|
| 276 |
+
stats_output = gr.Markdown(
|
| 277 |
+
value="_No graph generated yet._"
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
# Column for histogram (right side)
|
| 281 |
+
with gr.Column(scale=2, min_width=140):
|
| 282 |
+
hist_output = gr.HTML(
|
| 283 |
+
value="",
|
| 284 |
+
label="Odd vs Even Histogram",
|
| 285 |
+
)
|
| 286 |
+
|
| 287 |
+
# ============================
|
| 288 |
+
# Row 2: image display area
|
| 289 |
+
# ============================
|
| 290 |
+
with gr.Row():
|
| 291 |
+
with gr.Column():
|
| 292 |
+
image_output = gr.HTML(
|
| 293 |
+
label="Current Collatz Graph",
|
| 294 |
+
)
|
| 295 |
+
gr.Markdown(
|
| 296 |
+
"""
|
| 297 |
+
**Display tips:**
|
| 298 |
+
- In **Zoom & Scroll** mode, use the scrollbars to explore large graphs.
|
| 299 |
+
- In **Fit to Width** mode, the graph is scaled to the available width.
|
| 300 |
+
- You can right-click the image to open it in a new tab or save it.
|
| 301 |
+
"""
|
| 302 |
+
)
|
| 303 |
+
|
| 304 |
+
# Wire buttons: both update the same image + stats
|
| 305 |
+
gen_inverse.click(
|
| 306 |
+
fn=inverse_tree_callback,
|
| 307 |
+
inputs=[backbone_input, branch_input, depth_input, view_mode_inverse],
|
| 308 |
+
outputs=[image_output, stats_output, hist_output],
|
| 309 |
+
)
|
| 310 |
+
|
| 311 |
+
gen_minimal.click(
|
| 312 |
+
fn=minimal_subtree_callback,
|
| 313 |
+
inputs=[N_input, view_mode_minimal],
|
| 314 |
+
outputs=[image_output, stats_output, hist_output],
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
return demo
|
| 318 |
+
|
| 319 |
+
|
| 320 |
+
demo = build_demo()
|
| 321 |
+
|
| 322 |
+
if __name__ == "__main__":
|
| 323 |
+
demo.launch()
|
outputs/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
outputs/collatz_tree.png
ADDED
|
outputs/minimal_subtree.png
ADDED
|
requirements.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Core numerical & data utilities
|
| 2 |
+
pandas
|
| 3 |
+
numpy
|
| 4 |
+
|
| 5 |
+
# Graph algorithms & rendering
|
| 6 |
+
graphviz
|
| 7 |
+
networkx
|
| 8 |
+
|
| 9 |
+
# Visualizations
|
| 10 |
+
matplotlib
|
| 11 |
+
|
| 12 |
+
# HF Space interface
|
| 13 |
+
gradio
|
| 14 |
+
|
| 15 |
+
# System utilities (optional but requested)
|
| 16 |
+
psutil
|
| 17 |
+
matplotlib
|
src/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
src/__init__.py
ADDED
|
File without changes
|
src/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (185 Bytes). View file
|
|
|
src/__pycache__/utils.cpython-312.pyc
ADDED
|
Binary file (3.69 kB). View file
|
|
|
src/collatz/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
src/collatz/__init__.py
ADDED
|
File without changes
|
src/collatz/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (193 Bytes). View file
|
|
|
src/collatz/__pycache__/inverse_tree.cpython-312.pyc
ADDED
|
Binary file (3.97 kB). View file
|
|
|
src/collatz/__pycache__/metrics.cpython-312.pyc
ADDED
|
Binary file (4.22 kB). View file
|
|
|
src/collatz/__pycache__/minimal_subtree.cpython-312.pyc
ADDED
|
Binary file (6.1 kB). View file
|
|
|
src/collatz/inverse_tree.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from __future__ import annotations
|
| 2 |
+
|
| 3 |
+
from typing import List, Tuple
|
| 4 |
+
|
| 5 |
+
import pandas as pd
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
def generate_collatz_tree(
|
| 9 |
+
backbone_length: int = 11,
|
| 10 |
+
branch_length: int = 5,
|
| 11 |
+
max_depth: int = 3,
|
| 12 |
+
) -> pd.DataFrame:
|
| 13 |
+
"""
|
| 14 |
+
Generate an inverse Collatz tree structure starting from 1, with controlled
|
| 15 |
+
depth and branch expansion, based on the reverse Collatz rule:
|
| 16 |
+
|
| 17 |
+
If (n - 1) % 3 == 0 and n is even, then (n - 1) / 3 is a valid preimage.
|
| 18 |
+
|
| 19 |
+
The construction uses:
|
| 20 |
+
- a "backbone" of powers of 2 starting at 1,
|
| 21 |
+
- branches that grow from specific backbone nodes and from later branch nodes,
|
| 22 |
+
- recursive expansion up to exactly `max_depth` levels.
|
| 23 |
+
|
| 24 |
+
Parameters
|
| 25 |
+
----------
|
| 26 |
+
backbone_length : int, default=11
|
| 27 |
+
Length of the backbone (powers of 2).
|
| 28 |
+
Backbone nodes are exactly: 1, 2, 4, ..., 2^(backbone_length - 1).
|
| 29 |
+
branch_length : int, default=5
|
| 30 |
+
Length of each branch created from valid reverse steps.
|
| 31 |
+
Branch nodes are formed by repeated doubling from the branch root.
|
| 32 |
+
Branches always have exactly `branch_length` nodes.
|
| 33 |
+
max_depth : int, default=3
|
| 34 |
+
Number of recursive branch-expansion levels.
|
| 35 |
+
|
| 36 |
+
Returns
|
| 37 |
+
-------
|
| 38 |
+
pd.DataFrame
|
| 39 |
+
DataFrame with two columns:
|
| 40 |
+
- "Source": child node (preimage under the Collatz map),
|
| 41 |
+
- "Target": parent node (image under the Collatz map).
|
| 42 |
+
|
| 43 |
+
These edges define a directed tree (or forest) rooted at 1.
|
| 44 |
+
"""
|
| 45 |
+
|
| 46 |
+
if backbone_length < 2:
|
| 47 |
+
raise ValueError("backbone_length must be at least 2.")
|
| 48 |
+
|
| 49 |
+
if branch_length < 1:
|
| 50 |
+
raise ValueError("branch_length must be at least 1.")
|
| 51 |
+
|
| 52 |
+
if max_depth < 0:
|
| 53 |
+
raise ValueError("max_depth must be non-negative.")
|
| 54 |
+
|
| 55 |
+
# Backbone nodes: 1, 2, 4, ..., 2^(backbone_length - 1)
|
| 56 |
+
branches: List[List[int]] = [[2 ** i for i in range(backbone_length)]]
|
| 57 |
+
|
| 58 |
+
# Backbone edges: 2 -> 1, 4 -> 2, 8 -> 4, ...
|
| 59 |
+
edges: List[Tuple[int, int]] = [(2 ** i, 2 ** (i - 1)) for i in range(1, backbone_length)] + [(1,4)]
|
| 60 |
+
|
| 61 |
+
# Backbone nodes that will create branches: 2^4, 2^6, 2^8, ...
|
| 62 |
+
branch_creating_numbers: List[int] = [
|
| 63 |
+
2 ** i for i in range(4, backbone_length, 2)
|
| 64 |
+
]
|
| 65 |
+
|
| 66 |
+
# Recursive branch expansion with EXACT branch_length and max_depth
|
| 67 |
+
for _ in range(max_depth):
|
| 68 |
+
next_level_branch_creators: List[int] = []
|
| 69 |
+
|
| 70 |
+
for branch_num in branch_creating_numbers:
|
| 71 |
+
# Reverse Collatz: (branch_num - 1) / 3
|
| 72 |
+
parent = (branch_num - 1) // 3
|
| 73 |
+
edges.append((parent, branch_num))
|
| 74 |
+
|
| 75 |
+
# Create a branch of EXACT length = branch_length via repeated doubling
|
| 76 |
+
new_branch = [parent * (2 ** i) for i in range(branch_length)]
|
| 77 |
+
branches.append(new_branch)
|
| 78 |
+
|
| 79 |
+
# Link within the branch (2a -> a, 4a -> 2a, ...)
|
| 80 |
+
edges.extend(
|
| 81 |
+
(new_branch[i + 1], new_branch[i])
|
| 82 |
+
for i in range(len(new_branch) - 1)
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Candidates for further branching on next level
|
| 86 |
+
next_level_branch_creators.extend(
|
| 87 |
+
n for n in new_branch[1:] if (n - 1) % 3 == 0
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
branch_creating_numbers = next_level_branch_creators
|
| 91 |
+
|
| 92 |
+
df_edges = pd.DataFrame(edges, columns=["Source", "Target"]).drop_duplicates()
|
| 93 |
+
|
| 94 |
+
return df_edges
|
src/collatz/metrics.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Metrics and basic statistics for Collatz graphs.
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
from __future__ import annotations
|
| 6 |
+
|
| 7 |
+
from typing import Dict, Any, Iterable
|
| 8 |
+
|
| 9 |
+
import pandas as pd
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def _to_int_nodes(nodes: Iterable[Any]) -> list[int]:
|
| 13 |
+
"""
|
| 14 |
+
Safely convert an iterable of node labels to a list of integers.
|
| 15 |
+
Non-convertible labels are skipped.
|
| 16 |
+
"""
|
| 17 |
+
int_nodes: list[int] = []
|
| 18 |
+
for n in nodes:
|
| 19 |
+
try:
|
| 20 |
+
int_nodes.append(int(n))
|
| 21 |
+
except Exception:
|
| 22 |
+
continue
|
| 23 |
+
return int_nodes
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def compute_basic_graph_stats(df_edges: pd.DataFrame) -> Dict[str, Any]:
|
| 27 |
+
"""
|
| 28 |
+
Compute basic statistics for a Collatz graph represented
|
| 29 |
+
as a DataFrame of edges with columns ["Source", "Target"].
|
| 30 |
+
|
| 31 |
+
Returns a dictionary with:
|
| 32 |
+
- num_nodes: total number of distinct nodes
|
| 33 |
+
- num_edges: total number of edges
|
| 34 |
+
- num_odd: number of odd-valued nodes
|
| 35 |
+
- num_even: number of even-valued nodes
|
| 36 |
+
- min_node: minimum node value (if any)
|
| 37 |
+
- max_node: maximum node value (if any)
|
| 38 |
+
- num_cycles: number of cycles (here always 1: the trivial 1–2–4–1 cycle)
|
| 39 |
+
"""
|
| 40 |
+
if not {"Source", "Target"}.issubset(df_edges.columns):
|
| 41 |
+
raise ValueError("df_edges must contain 'Source' and 'Target' columns.")
|
| 42 |
+
|
| 43 |
+
raw_nodes = set(df_edges["Source"]).union(set(df_edges["Target"]))
|
| 44 |
+
nodes = _to_int_nodes(raw_nodes)
|
| 45 |
+
|
| 46 |
+
num_nodes = len(nodes)
|
| 47 |
+
num_edges = len(df_edges)
|
| 48 |
+
|
| 49 |
+
num_odd = sum(1 for n in nodes if n % 2 == 1)
|
| 50 |
+
num_even = sum(1 for n in nodes if n % 2 == 0)
|
| 51 |
+
|
| 52 |
+
min_node = min(nodes) if nodes else None
|
| 53 |
+
max_node = max(nodes) if nodes else None
|
| 54 |
+
|
| 55 |
+
# By construction, your graphs contain only the trivial 1–2–4–1 cycle.
|
| 56 |
+
num_cycles = 1 if num_nodes > 0 else 0
|
| 57 |
+
|
| 58 |
+
return {
|
| 59 |
+
"num_nodes": num_nodes,
|
| 60 |
+
"num_edges": num_edges,
|
| 61 |
+
"num_odd": num_odd,
|
| 62 |
+
"num_even": num_even,
|
| 63 |
+
"min_node": min_node,
|
| 64 |
+
"max_node": max_node,
|
| 65 |
+
"num_cycles": num_cycles,
|
| 66 |
+
}
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def format_stats_markdown(stats: Dict[str, Any]) -> str:
|
| 70 |
+
"""
|
| 71 |
+
Format the statistics dictionary returned by compute_basic_graph_stats
|
| 72 |
+
into a human-readable Markdown string for display in the UI.
|
| 73 |
+
"""
|
| 74 |
+
if not stats:
|
| 75 |
+
return "_No statistics available._"
|
| 76 |
+
|
| 77 |
+
num_nodes = stats.get("num_nodes", 0)
|
| 78 |
+
num_edges = stats.get("num_edges", 0)
|
| 79 |
+
num_odd = stats.get("num_odd", 0)
|
| 80 |
+
num_even = stats.get("num_even", 0)
|
| 81 |
+
min_node = stats.get("min_node", None)
|
| 82 |
+
max_node = stats.get("max_node", None)
|
| 83 |
+
num_cycles = stats.get("num_cycles", 0)
|
| 84 |
+
|
| 85 |
+
lines = [
|
| 86 |
+
"### Graph Statistics",
|
| 87 |
+
"",
|
| 88 |
+
f"- **Nodes:** {num_nodes}",
|
| 89 |
+
f"- **Edges:** {num_edges}",
|
| 90 |
+
f"- **Odd nodes:** {num_odd}",
|
| 91 |
+
f"- **Even nodes:** {num_even}",
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
if min_node is not None and max_node is not None:
|
| 95 |
+
lines.append(f"- **Node value range:** {min_node} to {max_node}")
|
| 96 |
+
|
| 97 |
+
# Trivial cycle information
|
| 98 |
+
if num_cycles:
|
| 99 |
+
lines.append(f"- **Cycles:** {num_cycles} (trivial cycle 1 → 2 → 4 → 1)")
|
| 100 |
+
|
| 101 |
+
return "\n".join(lines)
|
src/collatz/minimal_subtree.py
ADDED
|
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Minimal Collatz subtree construction up to N, using the structural
|
| 3 |
+
branch algorithm from the paper.
|
| 4 |
+
|
| 5 |
+
This file implements:
|
| 6 |
+
|
| 7 |
+
- Algorithm 5: GenerateCollatzBranches
|
| 8 |
+
- Algorithm 6: BuildCollatzSubtreeEdges
|
| 9 |
+
|
| 10 |
+
The combined effect is to construct the minimal Collatz subtree
|
| 11 |
+
(containing all natural numbers 1..N, plus necessary ancestors)
|
| 12 |
+
as a directed graph with edges (child -> parent) following the
|
| 13 |
+
forward Collatz map:
|
| 14 |
+
|
| 15 |
+
T(n) = n/2 if n is even
|
| 16 |
+
3n + 1 if n is odd
|
| 17 |
+
|
| 18 |
+
Edges are of the form (n, T(n)), including the structural edge (1, 4).
|
| 19 |
+
"""
|
| 20 |
+
|
| 21 |
+
from __future__ import annotations
|
| 22 |
+
|
| 23 |
+
from typing import Dict, List, Tuple
|
| 24 |
+
|
| 25 |
+
import pandas as pd
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# ============================================================
|
| 29 |
+
# Algorithm 5: GenerateCollatzBranches
|
| 30 |
+
# ============================================================
|
| 31 |
+
|
| 32 |
+
def generate_collatz_branches(N: int) -> Dict[int, List[int]]:
|
| 33 |
+
"""
|
| 34 |
+
Implement Algorithm 5: GenerateCollatzBranches.
|
| 35 |
+
|
| 36 |
+
Parameters
|
| 37 |
+
----------
|
| 38 |
+
N : int
|
| 39 |
+
Natural number N (upper bound for starting odd numbers).
|
| 40 |
+
|
| 41 |
+
Returns
|
| 42 |
+
-------
|
| 43 |
+
Dict[int, List[int]]
|
| 44 |
+
Dictionary `Tree` mapping each odd root y to an increasing list
|
| 45 |
+
of values of the form y * 2^m. Initially, each odd x ≤ N is mapped
|
| 46 |
+
to its doubling sequence up to N, then extended as needed when
|
| 47 |
+
exploring Collatz branches from all odd x in [3, N].
|
| 48 |
+
|
| 49 |
+
Notes
|
| 50 |
+
-----
|
| 51 |
+
Structural summary:
|
| 52 |
+
|
| 53 |
+
1) For each odd x ≤ N, create the base branch:
|
| 54 |
+
Tree[x] = [x, 2x, 4x, ..., 2^k x] (all ≤ N).
|
| 55 |
+
|
| 56 |
+
2) For each odd x from 3 to N, repeatedly perform:
|
| 57 |
+
b = 3x + 1
|
| 58 |
+
m = b & (-b) # largest power of 2 dividing b
|
| 59 |
+
y = b // m # odd part of b
|
| 60 |
+
|
| 61 |
+
and extend the branch for y so that it contains b (and any
|
| 62 |
+
intermediate doublings) if needed. Then set x <- y and repeat
|
| 63 |
+
until x = 1 or we break due to an already-covered b.
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
if N < 1:
|
| 67 |
+
raise ValueError("N must be a positive integer.")
|
| 68 |
+
|
| 69 |
+
Tree: Dict[int, List[int]] = {}
|
| 70 |
+
|
| 71 |
+
# ------------------------------------------------------------
|
| 72 |
+
# Lines 2–7: For all odd numbers x ≤ N, initialize base branches
|
| 73 |
+
# ------------------------------------------------------------
|
| 74 |
+
for x in range(1, N + 1, 2): # odd x: 1, 3, 5, ...
|
| 75 |
+
seq: List[int] = []
|
| 76 |
+
power = 1 # corresponds to 2^0, 2^1, 2^2, ...
|
| 77 |
+
while x * power <= N:
|
| 78 |
+
seq.append(x * power)
|
| 79 |
+
power *= 2
|
| 80 |
+
Tree[x] = seq
|
| 81 |
+
|
| 82 |
+
# ------------------------------------------------------------
|
| 83 |
+
# Lines 8–33: Extend branches using the 3x+1 structure
|
| 84 |
+
# ------------------------------------------------------------
|
| 85 |
+
for start_x in range(3, N + 1, 2): # x from 3 to N, odd
|
| 86 |
+
x = start_x
|
| 87 |
+
|
| 88 |
+
# while x ≠ 1 do
|
| 89 |
+
while x != 1:
|
| 90 |
+
# b ← 3x + 1
|
| 91 |
+
b = 3 * x + 1
|
| 92 |
+
|
| 93 |
+
# m ← b ∧ (−b) (least significant 1 bit, largest power of 2 dividing b)
|
| 94 |
+
m = b & -b
|
| 95 |
+
|
| 96 |
+
# y ← b / m (odd part)
|
| 97 |
+
y = b // m
|
| 98 |
+
|
| 99 |
+
# if y ∈ Tree then
|
| 100 |
+
if y in Tree:
|
| 101 |
+
# if b ∉ Tree[y] then
|
| 102 |
+
if b not in Tree[y]:
|
| 103 |
+
# power ← 2^{len(Tree[y])}
|
| 104 |
+
power = 1 << len(Tree[y])
|
| 105 |
+
|
| 106 |
+
# while y · power ≤ b do
|
| 107 |
+
while y * power <= b:
|
| 108 |
+
# Append y · power to Tree[y]
|
| 109 |
+
Tree[y].append(y * power)
|
| 110 |
+
# power ← power · 2
|
| 111 |
+
power *= 2
|
| 112 |
+
else:
|
| 113 |
+
# else break
|
| 114 |
+
break
|
| 115 |
+
else:
|
| 116 |
+
# else:
|
| 117 |
+
# power ← 1, seq ← []
|
| 118 |
+
power = 1
|
| 119 |
+
seq: List[int] = []
|
| 120 |
+
|
| 121 |
+
# while y · power ≤ b do
|
| 122 |
+
while y * power <= b:
|
| 123 |
+
# Append y · power to seq
|
| 124 |
+
seq.append(y * power)
|
| 125 |
+
# power ← power · 2
|
| 126 |
+
power *= 2
|
| 127 |
+
|
| 128 |
+
# Tree[y] ← seq
|
| 129 |
+
Tree[y] = seq
|
| 130 |
+
|
| 131 |
+
# x ← y
|
| 132 |
+
x = y
|
| 133 |
+
|
| 134 |
+
# Line 34: return Tree
|
| 135 |
+
return Tree
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# ============================================================
|
| 139 |
+
# Algorithm 6: BuildCollatzSubtreeEdges
|
| 140 |
+
# ============================================================
|
| 141 |
+
|
| 142 |
+
def build_collatz_subtree_edges(N: int, Tree: Dict[int, List[int]]) -> pd.DataFrame:
|
| 143 |
+
"""
|
| 144 |
+
Implement Algorithm 6: BuildCollatzSubtreeEdges.
|
| 145 |
+
|
| 146 |
+
Parameters
|
| 147 |
+
----------
|
| 148 |
+
N : int
|
| 149 |
+
Upper bound N (not explicitly used inside, but kept for interface
|
| 150 |
+
consistency with the paper).
|
| 151 |
+
Tree : Dict[int, List[int]]
|
| 152 |
+
Dictionary produced by generate_collatz_branches(N).
|
| 153 |
+
|
| 154 |
+
Returns
|
| 155 |
+
-------
|
| 156 |
+
pd.DataFrame
|
| 157 |
+
DataFrame with columns ["Source", "Target"], encoding directed
|
| 158 |
+
edges (child -> parent) of a connected minimal Collatz subtree
|
| 159 |
+
containing all integers up to N.
|
| 160 |
+
|
| 161 |
+
The pseudocode is followed line by line:
|
| 162 |
+
|
| 163 |
+
1) For each branch list S in Tree, add edges S[i] -> S[i-1].
|
| 164 |
+
2) For each odd root x > 1, compute:
|
| 165 |
+
b = 3x + 1
|
| 166 |
+
m = b & (-b)
|
| 167 |
+
y = b / m
|
| 168 |
+
find the index t of b in Tree[y], and add edge:
|
| 169 |
+
Tree[x][0] -> Tree[y][t]
|
| 170 |
+
which corresponds structurally to x -> 3x + 1.
|
| 171 |
+
3) Finally, add the structural edge (1, 4).
|
| 172 |
+
"""
|
| 173 |
+
|
| 174 |
+
edges: List[Tuple[int, int]] = []
|
| 175 |
+
|
| 176 |
+
# ------------------------------------------------------------
|
| 177 |
+
# Lines 2–6: For all branches (r, S) in Tree
|
| 178 |
+
# ------------------------------------------------------------
|
| 179 |
+
for _, S in Tree.items():
|
| 180 |
+
# S = [r, 2r, 4r, ...]; add edges S[i] -> S[i-1] for i = 1..|S|-1
|
| 181 |
+
for i in range(1, len(S)):
|
| 182 |
+
child = S[i]
|
| 183 |
+
parent = S[i - 1]
|
| 184 |
+
edges.append((child, parent))
|
| 185 |
+
|
| 186 |
+
# ------------------------------------------------------------
|
| 187 |
+
# Lines 7–13: Link branches via the 3x+1 structure
|
| 188 |
+
# ------------------------------------------------------------
|
| 189 |
+
for x in sorted(Tree.keys()):
|
| 190 |
+
if x > 1: # only odd roots greater than 1
|
| 191 |
+
# b = 3x + 1
|
| 192 |
+
b = 3 * x + 1
|
| 193 |
+
|
| 194 |
+
# m = b ∧ (-b)
|
| 195 |
+
m = b & -b
|
| 196 |
+
|
| 197 |
+
# y = b / m
|
| 198 |
+
y = b // m
|
| 199 |
+
|
| 200 |
+
# Let i ← index of b in Tree[y]
|
| 201 |
+
if y not in Tree:
|
| 202 |
+
# If Tree[y] does not exist, structure is inconsistent; skip.
|
| 203 |
+
continue
|
| 204 |
+
|
| 205 |
+
try:
|
| 206 |
+
t = Tree[y].index(b)
|
| 207 |
+
except ValueError:
|
| 208 |
+
# If b is not present in Tree[y], skip this link.
|
| 209 |
+
continue
|
| 210 |
+
|
| 211 |
+
# Add edge (Tree[x][0], Tree[y][i]) to edges
|
| 212 |
+
root_x = Tree[x][0] # odd root x
|
| 213 |
+
match_y = Tree[y][t] # this is b itself
|
| 214 |
+
edges.append((root_x, match_y))
|
| 215 |
+
|
| 216 |
+
# ------------------------------------------------------------
|
| 217 |
+
# Line 14: Add edge (1, 4)
|
| 218 |
+
# ------------------------------------------------------------
|
| 219 |
+
edges.append((1, 4))
|
| 220 |
+
|
| 221 |
+
# ------------------------------------------------------------
|
| 222 |
+
# Line 15: return edges as DataFrame
|
| 223 |
+
# ------------------------------------------------------------
|
| 224 |
+
df = pd.DataFrame(edges, columns=["Source", "Target"]).drop_duplicates()
|
| 225 |
+
return df
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
# ============================================================
|
| 229 |
+
# Convenience wrapper: minimal subtree edges up to N
|
| 230 |
+
# ============================================================
|
| 231 |
+
|
| 232 |
+
def generate_minimal_collatz_subtree_edges(N: int) -> pd.DataFrame:
|
| 233 |
+
"""
|
| 234 |
+
High-level helper that runs Algorithm 5 and Algorithm 6:
|
| 235 |
+
|
| 236 |
+
Tree = GenerateCollatzBranches(N)
|
| 237 |
+
edges = BuildCollatzSubtreeEdges(N, Tree)
|
| 238 |
+
|
| 239 |
+
and returns the resulting edge DataFrame.
|
| 240 |
+
|
| 241 |
+
Parameters
|
| 242 |
+
----------
|
| 243 |
+
N : int
|
| 244 |
+
Upper bound on the natural numbers to be included (1..N).
|
| 245 |
+
|
| 246 |
+
Returns
|
| 247 |
+
-------
|
| 248 |
+
pd.DataFrame
|
| 249 |
+
Edge list with columns ["Source", "Target"].
|
| 250 |
+
"""
|
| 251 |
+
Tree = generate_collatz_branches(N)
|
| 252 |
+
df_edges = build_collatz_subtree_edges(N, Tree)
|
| 253 |
+
return df_edges
|
src/utils.py
ADDED
|
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
High-level utilities for Collatz operations.
|
| 3 |
+
|
| 4 |
+
This module provides glue functions used by the web interface (app.py),
|
| 5 |
+
combining steps such as:
|
| 6 |
+
|
| 7 |
+
- generating an inverse Collatz tree,
|
| 8 |
+
- generating the minimal subtree up to N,
|
| 9 |
+
- computing basic statistics,
|
| 10 |
+
- rendering graphs to Graphviz PNG images.
|
| 11 |
+
"""
|
| 12 |
+
|
| 13 |
+
from __future__ import annotations
|
| 14 |
+
|
| 15 |
+
from typing import Optional, Tuple
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
|
| 18 |
+
import pandas as pd
|
| 19 |
+
|
| 20 |
+
from src.collatz.inverse_tree import generate_collatz_tree
|
| 21 |
+
from src.collatz.minimal_subtree import generate_minimal_collatz_subtree_edges
|
| 22 |
+
from src.visual.render import render_collatz_tree_graphviz
|
| 23 |
+
from src.collatz.metrics import compute_basic_graph_stats
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def build_and_render_collatz_tree(
|
| 27 |
+
backbone_length: int,
|
| 28 |
+
branch_length: int,
|
| 29 |
+
max_depth: int,
|
| 30 |
+
*,
|
| 31 |
+
filename: str = "collatz_tree",
|
| 32 |
+
output_dir: Optional[str] = "outputs",
|
| 33 |
+
return_edges: bool = False,
|
| 34 |
+
) -> Tuple[str, Optional[pd.DataFrame]]:
|
| 35 |
+
"""
|
| 36 |
+
Generate an inverse Collatz tree, render it as a PNG image, and optionally
|
| 37 |
+
return the underlying edge DataFrame.
|
| 38 |
+
"""
|
| 39 |
+
|
| 40 |
+
output_path = Path(output_dir)
|
| 41 |
+
output_path.mkdir(parents=True, exist_ok=True)
|
| 42 |
+
|
| 43 |
+
df_edges: pd.DataFrame = generate_collatz_tree(
|
| 44 |
+
backbone_length=backbone_length,
|
| 45 |
+
branch_length=branch_length,
|
| 46 |
+
max_depth=max_depth,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
image_path = render_collatz_tree_graphviz(
|
| 50 |
+
df_edges=df_edges,
|
| 51 |
+
filename=filename,
|
| 52 |
+
directory=output_path,
|
| 53 |
+
image_format="png",
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
if return_edges:
|
| 57 |
+
return image_path, df_edges
|
| 58 |
+
|
| 59 |
+
return image_path, None
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def build_and_render_minimal_subtree(
|
| 63 |
+
N: int,
|
| 64 |
+
*,
|
| 65 |
+
filename: str = "collatz_minimal_subtree",
|
| 66 |
+
output_dir: Optional[str] = "outputs",
|
| 67 |
+
return_edges: bool = False,
|
| 68 |
+
) -> Tuple[str, Optional[pd.DataFrame]]:
|
| 69 |
+
"""
|
| 70 |
+
Generate the minimal Collatz subtree containing all integers 1..N,
|
| 71 |
+
render it as a PNG image, and optionally return the underlying
|
| 72 |
+
edge DataFrame.
|
| 73 |
+
|
| 74 |
+
This uses the structural branch construction (Algorithms 5 and 6)
|
| 75 |
+
implemented in `generate_minimal_collatz_subtree_edges`.
|
| 76 |
+
"""
|
| 77 |
+
|
| 78 |
+
output_path = Path(output_dir)
|
| 79 |
+
output_path.mkdir(parents=True, exist_ok=True)
|
| 80 |
+
|
| 81 |
+
df_edges: pd.DataFrame = generate_minimal_collatz_subtree_edges(N)
|
| 82 |
+
|
| 83 |
+
image_path = render_collatz_tree_graphviz(
|
| 84 |
+
df_edges=df_edges,
|
| 85 |
+
filename=filename,
|
| 86 |
+
directory=output_path,
|
| 87 |
+
image_format="png",
|
| 88 |
+
)
|
| 89 |
+
|
| 90 |
+
if return_edges:
|
| 91 |
+
return image_path, df_edges
|
| 92 |
+
|
| 93 |
+
return image_path, None
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def compute_collatz_tree_stats(
|
| 97 |
+
backbone_length: int,
|
| 98 |
+
branch_length: int,
|
| 99 |
+
max_depth: int,
|
| 100 |
+
) -> dict:
|
| 101 |
+
"""
|
| 102 |
+
Convenience helper: generate the inverse Collatz tree and return
|
| 103 |
+
basic graph stats (number of nodes, edges, parity counts, etc.).
|
| 104 |
+
"""
|
| 105 |
+
df_edges = generate_collatz_tree(
|
| 106 |
+
backbone_length=backbone_length,
|
| 107 |
+
branch_length=branch_length,
|
| 108 |
+
max_depth=max_depth,
|
| 109 |
+
)
|
| 110 |
+
return compute_basic_graph_stats(df_edges)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def safe_int(x, default: int = 1) -> int:
|
| 114 |
+
"""
|
| 115 |
+
Convert a value to int safely.
|
| 116 |
+
This protects the Gradio app from crashing when users type invalid input.
|
| 117 |
+
"""
|
| 118 |
+
try:
|
| 119 |
+
return int(x)
|
| 120 |
+
except Exception:
|
| 121 |
+
return default
|
src/visual/.DS_Store
ADDED
|
Binary file (6.15 kB). View file
|
|
|
src/visual/__init__.py
ADDED
|
File without changes
|
src/visual/__pycache__/__init__.cpython-312.pyc
ADDED
|
Binary file (192 Bytes). View file
|
|
|
src/visual/__pycache__/render.cpython-312.pyc
ADDED
|
Binary file (6.62 kB). View file
|
|
|
src/visual/render.py
ADDED
|
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Graph rendering utilities for Collatz trees using Graphviz.
|
| 3 |
+
|
| 4 |
+
Main entry point:
|
| 5 |
+
|
| 6 |
+
render_collatz_tree_graphviz(df_edges, ...)
|
| 7 |
+
|
| 8 |
+
It takes a DataFrame of edges with columns ["Source", "Target"]
|
| 9 |
+
and renders a PNG image using Graphviz. The function returns the
|
| 10 |
+
absolute path to the generated image file, which is convenient
|
| 11 |
+
for Gradio's image components.
|
| 12 |
+
"""
|
| 13 |
+
|
| 14 |
+
from __future__ import annotations
|
| 15 |
+
|
| 16 |
+
from pathlib import Path
|
| 17 |
+
from typing import Optional, Union
|
| 18 |
+
|
| 19 |
+
import pandas as pd
|
| 20 |
+
from graphviz import Digraph
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
PathLike = Union[str, Path]
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def render_collatz_tree_graphviz(
|
| 27 |
+
df_edges: pd.DataFrame,
|
| 28 |
+
filename: str = "collatz_tree",
|
| 29 |
+
directory: Optional[PathLike] = None,
|
| 30 |
+
*,
|
| 31 |
+
font_size: int = 12,
|
| 32 |
+
node_size: float = 0.05,
|
| 33 |
+
arrow_size: float = 0.5,
|
| 34 |
+
nodesep: float = 0.2,
|
| 35 |
+
ranksep: float = 0.15,
|
| 36 |
+
dpi: int = 100,
|
| 37 |
+
image_format: str = "png",
|
| 38 |
+
) -> str:
|
| 39 |
+
"""
|
| 40 |
+
Render a Collatz inverse tree from a DataFrame of directed edges using Graphviz,
|
| 41 |
+
and save it as a single image file.
|
| 42 |
+
|
| 43 |
+
Parameters
|
| 44 |
+
----------
|
| 45 |
+
df_edges : pd.DataFrame
|
| 46 |
+
DataFrame with at least two columns: "Source" and "Target".
|
| 47 |
+
Each row defines a directed edge: Source -> Target.
|
| 48 |
+
filename : str, default="collatz_tree"
|
| 49 |
+
Base file name (without extension) for the generated image.
|
| 50 |
+
directory : str or Path, optional
|
| 51 |
+
Directory where the image will be written. If None, uses the current
|
| 52 |
+
working directory.
|
| 53 |
+
font_size : int, default=11
|
| 54 |
+
Fixed font size used for node labels. This stays constant.
|
| 55 |
+
node_size : float, default=0.40
|
| 56 |
+
Minimum diameter of node circles in inches. Nodes will grow
|
| 57 |
+
automatically if labels are larger.
|
| 58 |
+
arrow_size : float, default=0.5
|
| 59 |
+
Arrowhead size.
|
| 60 |
+
nodesep : float, default=0.2
|
| 61 |
+
Minimum space between nodes on the same rank/level.
|
| 62 |
+
ranksep : float, default=0.15
|
| 63 |
+
Minimum space between different ranks/levels in the tree.
|
| 64 |
+
dpi : int, default=200
|
| 65 |
+
Render resolution in dots-per-inch.
|
| 66 |
+
image_format : str, default="png"
|
| 67 |
+
Output image format supported by Graphviz (e.g. "png", "svg").
|
| 68 |
+
|
| 69 |
+
Returns
|
| 70 |
+
-------
|
| 71 |
+
str
|
| 72 |
+
Absolute filesystem path to the generated image file.
|
| 73 |
+
|
| 74 |
+
Notes
|
| 75 |
+
-----
|
| 76 |
+
- Layout direction is Bottom-to-Top ("BT"), so the root (1) appears near
|
| 77 |
+
the bottom and branches extend upwards.
|
| 78 |
+
- Font size is fixed; node circles automatically expand when labels
|
| 79 |
+
require more space, because fixedsize="false".
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
required_columns = {"Source", "Target"}
|
| 83 |
+
if not required_columns.issubset(df_edges.columns):
|
| 84 |
+
missing = required_columns.difference(df_edges.columns)
|
| 85 |
+
raise ValueError(
|
| 86 |
+
f"df_edges must contain columns {required_columns}, missing: {missing}"
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
# Output directory
|
| 90 |
+
if directory is None:
|
| 91 |
+
directory_path = Path(".").resolve()
|
| 92 |
+
else:
|
| 93 |
+
directory_path = Path(directory).resolve()
|
| 94 |
+
|
| 95 |
+
directory_path.mkdir(parents=True, exist_ok=True)
|
| 96 |
+
|
| 97 |
+
dot = Digraph(
|
| 98 |
+
comment="Collatz Inverse Tree",
|
| 99 |
+
format=image_format,
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
# Collect labels (just to ensure clean string formatting)
|
| 103 |
+
raw_nodes = set(df_edges["Source"]).union(set(df_edges["Target"]))
|
| 104 |
+
labels = []
|
| 105 |
+
for node in raw_nodes:
|
| 106 |
+
if isinstance(node, (int, float)) and int(node) == node:
|
| 107 |
+
label = str(int(node))
|
| 108 |
+
else:
|
| 109 |
+
label = str(node)
|
| 110 |
+
labels.append(label)
|
| 111 |
+
|
| 112 |
+
# Global graph layout: Bottom-to-Top tree
|
| 113 |
+
dot.attr(
|
| 114 |
+
rankdir="BT",
|
| 115 |
+
dpi=str(dpi),
|
| 116 |
+
nodesep=str(nodesep),
|
| 117 |
+
ranksep=str(ranksep),
|
| 118 |
+
)
|
| 119 |
+
|
| 120 |
+
# Node style:
|
| 121 |
+
# - fontsize is fixed (for consistent readability),
|
| 122 |
+
# - width/height is the *minimum* size,
|
| 123 |
+
# - fixedsize="false" lets Graphviz enlarge nodes as needed to fit labels.
|
| 124 |
+
dot.attr(
|
| 125 |
+
"node",
|
| 126 |
+
shape="circle",
|
| 127 |
+
fontsize=str(font_size),
|
| 128 |
+
width=str(node_size),
|
| 129 |
+
height=str(node_size),
|
| 130 |
+
fixedsize="false",
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
# Edge style
|
| 134 |
+
dot.attr("edge", arrowsize=str(arrow_size))
|
| 135 |
+
dot.attr(splines="true")
|
| 136 |
+
|
| 137 |
+
# Add nodes with parity-based coloring and special styling for 1, 2, 4
|
| 138 |
+
for label in labels:
|
| 139 |
+
attrs = {}
|
| 140 |
+
|
| 141 |
+
# Try to interpret the label as an integer to check parity
|
| 142 |
+
try:
|
| 143 |
+
n = int(label)
|
| 144 |
+
is_int = True
|
| 145 |
+
except Exception:
|
| 146 |
+
n = None
|
| 147 |
+
is_int = False
|
| 148 |
+
|
| 149 |
+
if is_int:
|
| 150 |
+
# Base colors by parity
|
| 151 |
+
if n % 2 == 0:
|
| 152 |
+
# Even nodes: light blue
|
| 153 |
+
attrs.update(style="filled", fillcolor="#ddeeff")
|
| 154 |
+
else:
|
| 155 |
+
# Odd nodes: light orange
|
| 156 |
+
attrs.update(style="filled", fillcolor="#ffe5cc")
|
| 157 |
+
|
| 158 |
+
# Special highlight for the trivial cycle 1 → 2 → 4 → 1
|
| 159 |
+
if n == 1:
|
| 160 |
+
attrs.update(
|
| 161 |
+
style="filled,bold",
|
| 162 |
+
fillcolor="#fff2cc", # brighter yellow
|
| 163 |
+
penwidth="2",
|
| 164 |
+
)
|
| 165 |
+
elif n in (2, 4):
|
| 166 |
+
attrs.update(
|
| 167 |
+
style="filled",
|
| 168 |
+
fillcolor="#d0e3ff", # slightly stronger blue
|
| 169 |
+
)
|
| 170 |
+
else:
|
| 171 |
+
# Non-integer labels, if any, keep default styling
|
| 172 |
+
pass
|
| 173 |
+
|
| 174 |
+
dot.node(label, **attrs)
|
| 175 |
+
|
| 176 |
+
# Add edges
|
| 177 |
+
for source, target in df_edges[["Source", "Target"]].itertuples(index=False):
|
| 178 |
+
# Normalize labels to nice integer strings when possible
|
| 179 |
+
if isinstance(source, (int, float)) and int(source) == source:
|
| 180 |
+
src_label = str(int(source))
|
| 181 |
+
else:
|
| 182 |
+
src_label = str(source)
|
| 183 |
+
|
| 184 |
+
if isinstance(target, (int, float)) and int(target) == target:
|
| 185 |
+
tgt_label = str(int(target))
|
| 186 |
+
else:
|
| 187 |
+
tgt_label = str(target)
|
| 188 |
+
|
| 189 |
+
# Special case: cycle-closing edge 1 -> 4
|
| 190 |
+
if src_label == "1" and tgt_label == "4":
|
| 191 |
+
dot.edge(
|
| 192 |
+
src_label,
|
| 193 |
+
tgt_label,
|
| 194 |
+
constraint="false", # do not affect layout / ranks
|
| 195 |
+
color="gray40",
|
| 196 |
+
penwidth="1.6",
|
| 197 |
+
style="curved", # request a curved spline
|
| 198 |
+
arrowsize="0.8",
|
| 199 |
+
)
|
| 200 |
+
else:
|
| 201 |
+
dot.edge(src_label, tgt_label)
|
| 202 |
+
|
| 203 |
+
# Render to file. Graphviz's render() returns the path including extension.
|
| 204 |
+
output_path = dot.render(
|
| 205 |
+
filename=filename,
|
| 206 |
+
directory=str(directory_path),
|
| 207 |
+
cleanup=True,
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
return str(Path(output_path).resolve())
|