abhinav-joshi
commited on
Commit
•
e22e877
1
Parent(s):
a6011ea
clean codebase
Browse files- dummy.py +0 -15
- eval_utils.py +155 -3
- evaluation_results.json +0 -38
- labels.txt +0 -12
- ner_helpers.py +0 -141
- uploads.py +41 -91
dummy.py
DELETED
@@ -1,15 +0,0 @@
|
|
1 |
-
import json
|
2 |
-
|
3 |
-
# load the results json file
|
4 |
-
with open("submissions/baseline/results.json") as f:
|
5 |
-
results = json.load(f)
|
6 |
-
|
7 |
-
|
8 |
-
# update the results
|
9 |
-
with open("submissions/baseline/submission.json") as f:
|
10 |
-
submission = json.load(f)
|
11 |
-
|
12 |
-
|
13 |
-
breakpoint()
|
14 |
-
# update the results
|
15 |
-
results.append(submission[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
eval_utils.py
CHANGED
@@ -13,7 +13,147 @@ from sklearn.metrics import f1_score
|
|
13 |
from tqdm import tqdm
|
14 |
from transformers import AutoTokenizer
|
15 |
|
16 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
|
19 |
def load_json(file_path):
|
@@ -76,8 +216,20 @@ def evaluate_cjpe(gold_data, pred_data):
|
|
76 |
|
77 |
|
78 |
def evaluate_lner(gold_data, pred_data, text_data):
|
79 |
-
|
80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
results_per_fold = {}
|
83 |
for fold in range(1, 4):
|
|
|
13 |
from tqdm import tqdm
|
14 |
from transformers import AutoTokenizer
|
15 |
|
16 |
+
from transformers import AutoTokenizer
|
17 |
+
import re
|
18 |
+
import string
|
19 |
+
|
20 |
+
|
21 |
+
class TF_Tokenizer:
|
22 |
+
def __init__(self, model_str):
|
23 |
+
tok = AutoTokenizer.from_pretrained(model_str)
|
24 |
+
|
25 |
+
def __call__(self, txt):
|
26 |
+
return self.tok.tokenize(txt)
|
27 |
+
|
28 |
+
|
29 |
+
class WS_Tokenizer:
|
30 |
+
def __init__(self):
|
31 |
+
pass
|
32 |
+
|
33 |
+
def __call__(self, txt):
|
34 |
+
return re.findall(r"[{}]|\w+".format(string.punctuation), txt)
|
35 |
+
|
36 |
+
|
37 |
+
def convert_spans_to_bio(txt, roles, tokenizer_func):
|
38 |
+
roles = sorted(roles, key=lambda x: x["start"])
|
39 |
+
roles_left = [r["start"] for r in roles]
|
40 |
+
|
41 |
+
ttxt = tokenizer_func(txt)
|
42 |
+
|
43 |
+
c = 0
|
44 |
+
cr = -1
|
45 |
+
prev = "O"
|
46 |
+
troles = []
|
47 |
+
for tok in ttxt:
|
48 |
+
if c >= len(txt):
|
49 |
+
break
|
50 |
+
|
51 |
+
while txt[c] == " ":
|
52 |
+
c += 1
|
53 |
+
|
54 |
+
else:
|
55 |
+
if c in roles_left: # Start of a new role
|
56 |
+
ind = roles_left.index(c)
|
57 |
+
cr = roles[ind]["end"]
|
58 |
+
prev = "I-" + roles[ind]["label"]
|
59 |
+
troles.append("B-" + roles[ind]["label"])
|
60 |
+
else:
|
61 |
+
if c < cr: # Assign previous role
|
62 |
+
troles.append(prev)
|
63 |
+
else: # Assign 'O'
|
64 |
+
troles.append("O")
|
65 |
+
|
66 |
+
c += len(tok)
|
67 |
+
|
68 |
+
if len(ttxt) != len(troles):
|
69 |
+
troles += ["O"] * (len(ttxt) - len(troles))
|
70 |
+
|
71 |
+
assert len(ttxt) == len(troles)
|
72 |
+
return troles
|
73 |
+
|
74 |
+
|
75 |
+
def convert_bio_to_spans(txt, troles, tokenizer_func):
|
76 |
+
c = 0
|
77 |
+
c2 = 0
|
78 |
+
cr = -1
|
79 |
+
cs = -1
|
80 |
+
prev = "O"
|
81 |
+
|
82 |
+
roles = []
|
83 |
+
ttxt = tokenizer_func(txt)
|
84 |
+
|
85 |
+
if len(ttxt) != len(troles):
|
86 |
+
ttxt = ttxt[: len(troles)]
|
87 |
+
|
88 |
+
for j, tok in enumerate(ttxt):
|
89 |
+
if c >= len(txt):
|
90 |
+
break
|
91 |
+
|
92 |
+
while c < len(txt) and txt[c].isspace():
|
93 |
+
c += 1
|
94 |
+
|
95 |
+
if tok[:2] == "##" or tok == "[UNK]":
|
96 |
+
c += len(tok) - 2 if tok[:2] == "##" else 1
|
97 |
+
else:
|
98 |
+
if troles[j].startswith("B-"):
|
99 |
+
if cs >= cr:
|
100 |
+
cr = c
|
101 |
+
if cs >= 0:
|
102 |
+
roles.append({"start": cs, "end": c2, "label": prev})
|
103 |
+
cs = c
|
104 |
+
prev = troles[j][2:]
|
105 |
+
else:
|
106 |
+
if troles[j] == "O":
|
107 |
+
if cs >= cr:
|
108 |
+
cr = c
|
109 |
+
if cs >= 0:
|
110 |
+
roles.append({"start": cs, "end": c2, "label": prev})
|
111 |
+
c += len(tok)
|
112 |
+
c2 = c
|
113 |
+
|
114 |
+
if cs >= cr:
|
115 |
+
if cs >= 0:
|
116 |
+
roles.append({"start": cs, "end": c2, "label": prev})
|
117 |
+
|
118 |
+
return roles
|
119 |
+
|
120 |
+
|
121 |
+
def span2bio(txt, labels):
|
122 |
+
roles = sorted(labels, key=lambda x: x["label"])
|
123 |
+
roles_left = [r["start"] for r in roles]
|
124 |
+
|
125 |
+
ttxt = re.findall(r"[{}]|\w+".format(string.punctuation), txt)
|
126 |
+
|
127 |
+
c = 0
|
128 |
+
cr = -1
|
129 |
+
prev = "O"
|
130 |
+
troles = []
|
131 |
+
for tok in ttxt:
|
132 |
+
if c >= len(txt):
|
133 |
+
break
|
134 |
+
|
135 |
+
while txt[c] == " ":
|
136 |
+
c += 1
|
137 |
+
|
138 |
+
else:
|
139 |
+
if c in roles_left: # Start of a new role
|
140 |
+
ind = roles_left.index(c)
|
141 |
+
cr = roles[ind]["end"]
|
142 |
+
prev = "I-" + roles[ind]["label"]
|
143 |
+
troles.append("B-" + roles[ind]["label"])
|
144 |
+
else:
|
145 |
+
if c < cr: # Assign previous role
|
146 |
+
troles.append(prev)
|
147 |
+
else: # Assign 'O'
|
148 |
+
troles.append("O")
|
149 |
+
|
150 |
+
c += len(tok)
|
151 |
+
|
152 |
+
if len(ttxt) != len(troles):
|
153 |
+
troles += ["O"] * (len(ttxt) - len(troles))
|
154 |
+
|
155 |
+
assert len(ttxt) == len(troles)
|
156 |
+
return ttxt, troles
|
157 |
|
158 |
|
159 |
def load_json(file_path):
|
|
|
216 |
|
217 |
|
218 |
def evaluate_lner(gold_data, pred_data, text_data):
|
219 |
+
labels = [
|
220 |
+
"APP",
|
221 |
+
"RESP",
|
222 |
+
"A.COUNSEL",
|
223 |
+
"R.COUNSEL",
|
224 |
+
"JUDGE",
|
225 |
+
"WIT",
|
226 |
+
"AUTH",
|
227 |
+
"COURT",
|
228 |
+
"STAT",
|
229 |
+
"PREC",
|
230 |
+
"DATE",
|
231 |
+
"CASENO",
|
232 |
+
]
|
233 |
|
234 |
results_per_fold = {}
|
235 |
for fold in range(1, 4):
|
evaluation_results.json
DELETED
@@ -1,38 +0,0 @@
|
|
1 |
-
[
|
2 |
-
{
|
3 |
-
"Method": "GPT-5 (2-shot)",
|
4 |
-
"Submitted By": "IL-TUR",
|
5 |
-
"Github Link": "dummy submission",
|
6 |
-
"L-NER": {
|
7 |
-
"strict mF1": "-"
|
8 |
-
},
|
9 |
-
"RR": {
|
10 |
-
"mF1": {
|
11 |
-
"mF1": "0.10"
|
12 |
-
}
|
13 |
-
},
|
14 |
-
"CJPE": {
|
15 |
-
"mF1": "-",
|
16 |
-
"ROUGE-L": "-",
|
17 |
-
"BLEU": "-"
|
18 |
-
},
|
19 |
-
"BAIL": {
|
20 |
-
"mF1": "0.02"
|
21 |
-
},
|
22 |
-
"LSI": {
|
23 |
-
"mF1": "0.26"
|
24 |
-
},
|
25 |
-
"PCR": {
|
26 |
-
"muF1@K": "0.63"
|
27 |
-
},
|
28 |
-
"SUMM": {
|
29 |
-
"ROUGE-L": "-",
|
30 |
-
"BERTSCORE": "-"
|
31 |
-
},
|
32 |
-
"L-MT": {
|
33 |
-
"BLEU": "-",
|
34 |
-
"GLEU": "-",
|
35 |
-
"chrF++": "-"
|
36 |
-
}
|
37 |
-
}
|
38 |
-
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
labels.txt
DELETED
@@ -1,12 +0,0 @@
|
|
1 |
-
APP
|
2 |
-
RESP
|
3 |
-
A.COUNSEL
|
4 |
-
R.COUNSEL
|
5 |
-
JUDGE
|
6 |
-
WIT
|
7 |
-
AUTH
|
8 |
-
COURT
|
9 |
-
STAT
|
10 |
-
PREC
|
11 |
-
DATE
|
12 |
-
CASENO
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ner_helpers.py
DELETED
@@ -1,141 +0,0 @@
|
|
1 |
-
from transformers import AutoTokenizer
|
2 |
-
import re
|
3 |
-
import string
|
4 |
-
|
5 |
-
|
6 |
-
class TF_Tokenizer:
|
7 |
-
def __init__(self, model_str):
|
8 |
-
tok = AutoTokenizer.from_pretrained(model_str)
|
9 |
-
|
10 |
-
def __call__(self, txt):
|
11 |
-
return self.tok.tokenize(txt)
|
12 |
-
|
13 |
-
|
14 |
-
class WS_Tokenizer:
|
15 |
-
def __init__(self):
|
16 |
-
pass
|
17 |
-
|
18 |
-
def __call__(self, txt):
|
19 |
-
return re.findall(r"[{}]|\w+".format(string.punctuation), txt)
|
20 |
-
|
21 |
-
|
22 |
-
def convert_spans_to_bio(txt, roles, tokenizer_func):
|
23 |
-
roles = sorted(roles, key=lambda x: x["start"])
|
24 |
-
roles_left = [r["start"] for r in roles]
|
25 |
-
|
26 |
-
ttxt = tokenizer_func(txt)
|
27 |
-
|
28 |
-
c = 0
|
29 |
-
cr = -1
|
30 |
-
prev = "O"
|
31 |
-
troles = []
|
32 |
-
for tok in ttxt:
|
33 |
-
if c >= len(txt):
|
34 |
-
break
|
35 |
-
|
36 |
-
while txt[c] == " ":
|
37 |
-
c += 1
|
38 |
-
|
39 |
-
else:
|
40 |
-
if c in roles_left: # Start of a new role
|
41 |
-
ind = roles_left.index(c)
|
42 |
-
cr = roles[ind]["end"]
|
43 |
-
prev = "I-" + roles[ind]["label"]
|
44 |
-
troles.append("B-" + roles[ind]["label"])
|
45 |
-
else:
|
46 |
-
if c < cr: # Assign previous role
|
47 |
-
troles.append(prev)
|
48 |
-
else: # Assign 'O'
|
49 |
-
troles.append("O")
|
50 |
-
|
51 |
-
c += len(tok)
|
52 |
-
|
53 |
-
if len(ttxt) != len(troles):
|
54 |
-
troles += ["O"] * (len(ttxt) - len(troles))
|
55 |
-
|
56 |
-
assert len(ttxt) == len(troles)
|
57 |
-
return troles
|
58 |
-
|
59 |
-
|
60 |
-
def convert_bio_to_spans(txt, troles, tokenizer_func):
|
61 |
-
c = 0
|
62 |
-
c2 = 0
|
63 |
-
cr = -1
|
64 |
-
cs = -1
|
65 |
-
prev = "O"
|
66 |
-
|
67 |
-
roles = []
|
68 |
-
ttxt = tokenizer_func(txt)
|
69 |
-
|
70 |
-
if len(ttxt) != len(troles):
|
71 |
-
ttxt = ttxt[: len(troles)]
|
72 |
-
|
73 |
-
for j, tok in enumerate(ttxt):
|
74 |
-
if c >= len(txt):
|
75 |
-
break
|
76 |
-
|
77 |
-
while c < len(txt) and txt[c].isspace():
|
78 |
-
c += 1
|
79 |
-
|
80 |
-
if tok[:2] == "##" or tok == "[UNK]":
|
81 |
-
c += len(tok) - 2 if tok[:2] == "##" else 1
|
82 |
-
else:
|
83 |
-
if troles[j].startswith("B-"):
|
84 |
-
if cs >= cr:
|
85 |
-
cr = c
|
86 |
-
if cs >= 0:
|
87 |
-
roles.append({"start": cs, "end": c2, "label": prev})
|
88 |
-
cs = c
|
89 |
-
prev = troles[j][2:]
|
90 |
-
else:
|
91 |
-
if troles[j] == "O":
|
92 |
-
if cs >= cr:
|
93 |
-
cr = c
|
94 |
-
if cs >= 0:
|
95 |
-
roles.append({"start": cs, "end": c2, "label": prev})
|
96 |
-
c += len(tok)
|
97 |
-
c2 = c
|
98 |
-
|
99 |
-
if cs >= cr:
|
100 |
-
if cs >= 0:
|
101 |
-
roles.append({"start": cs, "end": c2, "label": prev})
|
102 |
-
|
103 |
-
return roles
|
104 |
-
|
105 |
-
|
106 |
-
def span2bio(txt, labels):
|
107 |
-
roles = sorted(labels, key=lambda x: x["label"])
|
108 |
-
roles_left = [r["start"] for r in roles]
|
109 |
-
|
110 |
-
ttxt = re.findall(r"[{}]|\w+".format(string.punctuation), txt)
|
111 |
-
|
112 |
-
c = 0
|
113 |
-
cr = -1
|
114 |
-
prev = "O"
|
115 |
-
troles = []
|
116 |
-
for tok in ttxt:
|
117 |
-
if c >= len(txt):
|
118 |
-
break
|
119 |
-
|
120 |
-
while txt[c] == " ":
|
121 |
-
c += 1
|
122 |
-
|
123 |
-
else:
|
124 |
-
if c in roles_left: # Start of a new role
|
125 |
-
ind = roles_left.index(c)
|
126 |
-
cr = roles[ind]["end"]
|
127 |
-
prev = "I-" + roles[ind]["label"]
|
128 |
-
troles.append("B-" + roles[ind]["label"])
|
129 |
-
else:
|
130 |
-
if c < cr: # Assign previous role
|
131 |
-
troles.append(prev)
|
132 |
-
else: # Assign 'O'
|
133 |
-
troles.append("O")
|
134 |
-
|
135 |
-
c += len(tok)
|
136 |
-
|
137 |
-
if len(ttxt) != len(troles):
|
138 |
-
troles += ["O"] * (len(ttxt) - len(troles))
|
139 |
-
|
140 |
-
assert len(ttxt) == len(troles)
|
141 |
-
return ttxt, troles
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
uploads.py
CHANGED
@@ -1,33 +1,38 @@
|
|
1 |
-
from email.utils import parseaddr
|
2 |
-
from huggingface_hub import HfApi
|
3 |
import os
|
4 |
-
import datetime
|
5 |
import json
|
6 |
-
import
|
|
|
|
|
|
|
|
|
7 |
import gradio as gr
|
8 |
|
9 |
from eval_utils import get_evaluation_scores
|
10 |
|
11 |
-
|
12 |
LEADERBOARD_PATH = "Exploration-Lab/IL-TUR-Leaderboard"
|
13 |
SUBMISSION_FORMAT = "predictions"
|
14 |
-
# RESULTS_PATH = "Exploration-Lab/IL-TUR-Leaderboard-results"
|
15 |
TOKEN = os.environ.get("TOKEN", None)
|
16 |
YEAR_VERSION = "2024"
|
17 |
|
18 |
api = HfApi(token=TOKEN)
|
19 |
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
def format_error(msg):
|
22 |
-
return
|
23 |
|
24 |
|
25 |
def format_warning(msg):
|
26 |
-
return
|
27 |
|
28 |
|
29 |
def format_log(msg):
|
30 |
-
return
|
31 |
|
32 |
|
33 |
def model_hyperlink(link, model_name):
|
@@ -35,26 +40,22 @@ def model_hyperlink(link, model_name):
|
|
35 |
|
36 |
|
37 |
def input_verification(method_name, url, path_to_file, organisation, mail):
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
|
|
|
|
|
|
43 |
_, parsed_mail = parseaddr(mail)
|
44 |
-
if
|
45 |
-
return format_warning("Please provide a valid email
|
46 |
|
|
|
47 |
if path_to_file is None:
|
48 |
return format_warning("Please attach a file.")
|
49 |
|
50 |
-
# check the required fields
|
51 |
-
required_fields = ["Method", "Submitted By", "url", "organisation", "mail"]
|
52 |
-
|
53 |
-
# Check if the required_fields are not blank
|
54 |
-
for field in required_fields:
|
55 |
-
if field not in locals():
|
56 |
-
raise gr.Error(f"{field} cannot be blank")
|
57 |
-
|
58 |
return parsed_mail
|
59 |
|
60 |
|
@@ -66,98 +67,47 @@ def add_new_eval(
|
|
66 |
organisation: str,
|
67 |
mail: str,
|
68 |
):
|
|
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
organisation,
|
75 |
-
mail,
|
76 |
-
)
|
77 |
-
|
78 |
-
# # load the file
|
79 |
-
# df = pd.read_csv(path_to_file)
|
80 |
-
# submission_df = pd.read_csv(path_to_file)
|
81 |
-
|
82 |
-
# # modify the df to include metadata
|
83 |
-
# df["Method"] = method_name
|
84 |
-
# df["url"] = url
|
85 |
-
# df["organisation"] = organisation
|
86 |
-
# df["mail"] = parsed_mail
|
87 |
-
# df["timestamp"] = datetime.datetime.now()
|
88 |
-
|
89 |
-
# submission_df = pd.read_csv(path_to_file)
|
90 |
-
# submission_df["Method"] = method_name
|
91 |
-
# submission_df["Submitted By"] = organisation
|
92 |
-
# # upload to spaces using the hf api at
|
93 |
-
|
94 |
-
# path_in_repo = f"submissions/{method_name}"
|
95 |
-
# file_name = f"{method_name}-{organisation}-{datetime.datetime.now().strftime('%Y-%m-%d')}.csv"
|
96 |
-
|
97 |
-
# upload the df to spaces
|
98 |
-
import io
|
99 |
|
|
|
100 |
if SUBMISSION_FORMAT == "predictions":
|
101 |
-
#
|
102 |
with open(path_to_file, "r") as f:
|
103 |
submission_data = json.load(f)
|
104 |
-
|
105 |
-
# read the gold json file
|
106 |
with open("submissions/baseline/IL_TUR_eval_gold_small.json", "r") as f:
|
107 |
gold_data = json.load(f)
|
108 |
|
|
|
109 |
submission = get_evaluation_scores(gold_data, submission_data)
|
110 |
-
|
111 |
else:
|
112 |
-
#
|
113 |
with open(path_to_file, "r") as f:
|
114 |
submission = json.load(f)
|
115 |
|
|
|
116 |
with open("submissions/baseline/results.json", "r") as f:
|
117 |
results = json.load(f)
|
118 |
-
|
119 |
-
# update the results
|
120 |
results.append(submission[0])
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
# buffer.seek(0) # Rewind the buffer to the beginning
|
125 |
-
|
126 |
-
# save the results to buffer
|
127 |
-
leaderboard_buffer.write(json.dumps(results).encode())
|
128 |
leaderboard_buffer.seek(0)
|
129 |
|
130 |
-
#
|
131 |
-
# repo_id=RESULTS_PATH,
|
132 |
-
# path_in_repo=f"{path_in_repo}/{file_name}",
|
133 |
-
# path_or_fileobj=buffer,
|
134 |
-
# token=TOKEN,
|
135 |
-
# repo_type="dataset",
|
136 |
-
# )
|
137 |
-
# # read the leaderboard
|
138 |
-
# leaderboard_df = pd.read_csv(f"submissions/baseline/baseline.csv")
|
139 |
-
|
140 |
-
# # append the new submission_df csv to the leaderboard
|
141 |
-
# # leaderboard_df = leaderboard_df._append(submission_df)
|
142 |
-
# # leaderboard_df = pd.concat([leaderboard_df, submission_df], ignore_index=True)
|
143 |
-
|
144 |
-
# # save the new leaderboard
|
145 |
-
# # leaderboard_df.to_csv(f"submissions/baseline/baseline.csv", index=False)
|
146 |
-
# leaderboard_buffer = io.BytesIO()
|
147 |
-
# leaderboard_df.to_csv(leaderboard_buffer, index=False)
|
148 |
-
# leaderboard_buffer.seek(0)
|
149 |
-
# with open("submissions/baseline/results.json", "w") as f:
|
150 |
-
# json.dump(results, f)
|
151 |
-
|
152 |
api.upload_file(
|
153 |
repo_id=LEADERBOARD_PATH,
|
154 |
-
|
155 |
-
path_in_repo=f"submissions/baseline/results.json",
|
156 |
path_or_fileobj=leaderboard_buffer,
|
157 |
token=TOKEN,
|
158 |
repo_type="space",
|
159 |
)
|
160 |
|
161 |
return format_log(
|
162 |
-
f"Method {method_name} submitted by {organisation} successfully. \
|
|
|
163 |
)
|
|
|
|
|
|
|
1 |
import os
|
|
|
2 |
import json
|
3 |
+
import datetime
|
4 |
+
from email.utils import parseaddr
|
5 |
+
from io import BytesIO
|
6 |
+
|
7 |
+
from huggingface_hub import HfApi
|
8 |
import gradio as gr
|
9 |
|
10 |
from eval_utils import get_evaluation_scores
|
11 |
|
12 |
+
# Constants
|
13 |
LEADERBOARD_PATH = "Exploration-Lab/IL-TUR-Leaderboard"
|
14 |
SUBMISSION_FORMAT = "predictions"
|
|
|
15 |
TOKEN = os.environ.get("TOKEN", None)
|
16 |
YEAR_VERSION = "2024"
|
17 |
|
18 |
api = HfApi(token=TOKEN)
|
19 |
|
20 |
|
21 |
+
# Helper functions for formatting messages
|
22 |
+
def format_message(msg, color):
|
23 |
+
return f"<p style='color: {color}; font-size: 20px; text-align: center;'>{msg}</p>"
|
24 |
+
|
25 |
+
|
26 |
def format_error(msg):
|
27 |
+
return format_message(msg, "red")
|
28 |
|
29 |
|
30 |
def format_warning(msg):
|
31 |
+
return format_message(msg, "orange")
|
32 |
|
33 |
|
34 |
def format_log(msg):
|
35 |
+
return format_message(msg, "green")
|
36 |
|
37 |
|
38 |
def model_hyperlink(link, model_name):
|
|
|
40 |
|
41 |
|
42 |
def input_verification(method_name, url, path_to_file, organisation, mail):
|
43 |
+
"""Verify the input fields for submission."""
|
44 |
+
# Check if any field is empty
|
45 |
+
if any(
|
46 |
+
input == "" for input in [method_name, url, path_to_file, organisation, mail]
|
47 |
+
):
|
48 |
+
return format_warning("Please fill all the fields.")
|
49 |
+
|
50 |
+
# Verify email format
|
51 |
_, parsed_mail = parseaddr(mail)
|
52 |
+
if "@" not in parsed_mail:
|
53 |
+
return format_warning("Please provide a valid email address.")
|
54 |
|
55 |
+
# Check if file is attached
|
56 |
if path_to_file is None:
|
57 |
return format_warning("Please attach a file.")
|
58 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
return parsed_mail
|
60 |
|
61 |
|
|
|
67 |
organisation: str,
|
68 |
mail: str,
|
69 |
):
|
70 |
+
"""Add a new evaluation to the leaderboard."""
|
71 |
|
72 |
+
# Verify input
|
73 |
+
parsed_mail = input_verification(method_name, url, path_to_file, organisation, mail)
|
74 |
+
if parsed_mail.startswith("<p"): # If it's a warning message
|
75 |
+
return parsed_mail
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
|
77 |
+
# Process submission
|
78 |
if SUBMISSION_FORMAT == "predictions":
|
79 |
+
# Read submission and gold data
|
80 |
with open(path_to_file, "r") as f:
|
81 |
submission_data = json.load(f)
|
|
|
|
|
82 |
with open("submissions/baseline/IL_TUR_eval_gold_small.json", "r") as f:
|
83 |
gold_data = json.load(f)
|
84 |
|
85 |
+
# Get evaluation scores
|
86 |
submission = get_evaluation_scores(gold_data, submission_data)
|
|
|
87 |
else:
|
88 |
+
# Read submission directly if it's not in predictions format
|
89 |
with open(path_to_file, "r") as f:
|
90 |
submission = json.load(f)
|
91 |
|
92 |
+
# Update results
|
93 |
with open("submissions/baseline/results.json", "r") as f:
|
94 |
results = json.load(f)
|
|
|
|
|
95 |
results.append(submission[0])
|
96 |
|
97 |
+
# Prepare buffer for upload
|
98 |
+
leaderboard_buffer = BytesIO(json.dumps(results).encode())
|
|
|
|
|
|
|
|
|
99 |
leaderboard_buffer.seek(0)
|
100 |
|
101 |
+
# Upload to Hugging Face
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
api.upload_file(
|
103 |
repo_id=LEADERBOARD_PATH,
|
104 |
+
path_in_repo="submissions/baseline/results.json",
|
|
|
105 |
path_or_fileobj=leaderboard_buffer,
|
106 |
token=TOKEN,
|
107 |
repo_type="space",
|
108 |
)
|
109 |
|
110 |
return format_log(
|
111 |
+
f"Method {method_name} submitted by {organisation} successfully. \n"
|
112 |
+
"Please refresh the leaderboard, and wait a bit to see the score displayed"
|
113 |
)
|