EwoutLagendijk
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import torch
|
2 |
-
from transformers import pipeline
|
3 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
4 |
import gradio as gr
|
5 |
import librosa
|
@@ -9,34 +9,14 @@ BATCH_SIZE = 8
|
|
9 |
|
10 |
device = 0 if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
-
|
13 |
-
|
14 |
-
model=MODEL_NAME,
|
15 |
-
chunk_length_s=30,
|
16 |
-
device=device,
|
17 |
-
)
|
18 |
-
|
19 |
-
|
20 |
-
# Copied from https://github.com/openai/whisper/blob/c09a7ae299c4c34c5839a76380ae407e7d785914/whisper/utils.py#L50
|
21 |
-
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."):
|
22 |
-
if seconds is not None:
|
23 |
-
milliseconds = round(seconds * 1000.0)
|
24 |
-
|
25 |
-
hours = milliseconds // 3_600_000
|
26 |
-
milliseconds -= hours * 3_600_000
|
27 |
-
|
28 |
-
minutes = milliseconds // 60_000
|
29 |
-
milliseconds -= minutes * 60_000
|
30 |
-
|
31 |
-
seconds = milliseconds // 1_000
|
32 |
-
milliseconds -= seconds * 1_000
|
33 |
|
34 |
-
|
35 |
-
|
36 |
-
else:
|
37 |
-
# we have a malformed timestamp so just return it as is
|
38 |
-
return seconds
|
39 |
|
|
|
|
|
40 |
|
41 |
def transcribe_speech(filepath):
|
42 |
# Load the audio
|
@@ -58,7 +38,8 @@ def transcribe_speech(filepath):
|
|
58 |
generated_ids = model.generate(
|
59 |
inputs,
|
60 |
max_new_tokens=444, # Max allowed by Whisper
|
61 |
-
forced_decoder_ids=processor.get_decoder_prompt_ids(language="id", task="transcribe")
|
|
|
62 |
)
|
63 |
|
64 |
# Decode and append the transcription
|
|
|
1 |
import torch
|
2 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
3 |
from transformers.pipelines.audio_utils import ffmpeg_read
|
4 |
import gradio as gr
|
5 |
import librosa
|
|
|
9 |
|
10 |
device = 0 if torch.cuda.is_available() else "cpu"
|
11 |
|
12 |
+
# Load model and processor
|
13 |
+
model_name = "EwoutLagendijk/whisper-small-indonesian"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
+
model = AutoModelForSpeechSeq2Seq.from_pretrained(model_name)
|
16 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
|
|
|
|
|
|
17 |
|
18 |
+
# Update the generation config for transcription
|
19 |
+
model.config.forced_decoder_ids = processor.get_decoder_prompt_ids(language="id", task="transcribe")
|
20 |
|
21 |
def transcribe_speech(filepath):
|
22 |
# Load the audio
|
|
|
38 |
generated_ids = model.generate(
|
39 |
inputs,
|
40 |
max_new_tokens=444, # Max allowed by Whisper
|
41 |
+
forced_decoder_ids=processor.get_decoder_prompt_ids(language="id", task="transcribe"),
|
42 |
+
return_timestamps = True
|
43 |
)
|
44 |
|
45 |
# Decode and append the transcription
|