|
|
|
|
|
|
|
|
|
|
|
|
|
import typing as tp |
|
|
|
import torchaudio |
|
import torch |
|
from torch import nn |
|
from einops import rearrange |
|
|
|
from ...modules import NormConv2d |
|
from .base import MultiDiscriminator, MultiDiscriminatorOutputType |
|
|
|
|
|
def get_2d_padding(kernel_size: tp.Tuple[int, int], dilation: tp.Tuple[int, int] = (1, 1)): |
|
return (((kernel_size[0] - 1) * dilation[0]) // 2, ((kernel_size[1] - 1) * dilation[1]) // 2) |
|
|
|
|
|
class DiscriminatorSTFT(nn.Module): |
|
"""STFT sub-discriminator. |
|
|
|
Args: |
|
filters (int): Number of filters in convolutions. |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of output channels. |
|
n_fft (int): Size of FFT for each scale. |
|
hop_length (int): Length of hop between STFT windows for each scale. |
|
kernel_size (tuple of int): Inner Conv2d kernel sizes. |
|
stride (tuple of int): Inner Conv2d strides. |
|
dilations (list of int): Inner Conv2d dilation on the time dimension. |
|
win_length (int): Window size for each scale. |
|
normalized (bool): Whether to normalize by magnitude after stft. |
|
norm (str): Normalization method. |
|
activation (str): Activation function. |
|
activation_params (dict): Parameters to provide to the activation function. |
|
growth (int): Growth factor for the filters. |
|
""" |
|
def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1, |
|
n_fft: int = 1024, hop_length: int = 256, win_length: int = 1024, max_filters: int = 1024, |
|
filters_scale: int = 1, kernel_size: tp.Tuple[int, int] = (3, 9), dilations: tp.List = [1, 2, 4], |
|
stride: tp.Tuple[int, int] = (1, 2), normalized: bool = True, norm: str = 'weight_norm', |
|
activation: str = 'LeakyReLU', activation_params: dict = {'negative_slope': 0.2}): |
|
super().__init__() |
|
assert len(kernel_size) == 2 |
|
assert len(stride) == 2 |
|
self.filters = filters |
|
self.in_channels = in_channels |
|
self.out_channels = out_channels |
|
self.n_fft = n_fft |
|
self.hop_length = hop_length |
|
self.win_length = win_length |
|
self.normalized = normalized |
|
self.activation = getattr(torch.nn, activation)(**activation_params) |
|
self.spec_transform = torchaudio.transforms.Spectrogram( |
|
n_fft=self.n_fft, hop_length=self.hop_length, win_length=self.win_length, window_fn=torch.hann_window, |
|
normalized=self.normalized, center=False, pad_mode=None, power=None) |
|
spec_channels = 2 * self.in_channels |
|
self.convs = nn.ModuleList() |
|
self.convs.append( |
|
NormConv2d(spec_channels, self.filters, kernel_size=kernel_size, padding=get_2d_padding(kernel_size)) |
|
) |
|
in_chs = min(filters_scale * self.filters, max_filters) |
|
for i, dilation in enumerate(dilations): |
|
out_chs = min((filters_scale ** (i + 1)) * self.filters, max_filters) |
|
self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=kernel_size, stride=stride, |
|
dilation=(dilation, 1), padding=get_2d_padding(kernel_size, (dilation, 1)), |
|
norm=norm)) |
|
in_chs = out_chs |
|
out_chs = min((filters_scale ** (len(dilations) + 1)) * self.filters, max_filters) |
|
self.convs.append(NormConv2d(in_chs, out_chs, kernel_size=(kernel_size[0], kernel_size[0]), |
|
padding=get_2d_padding((kernel_size[0], kernel_size[0])), |
|
norm=norm)) |
|
self.conv_post = NormConv2d(out_chs, self.out_channels, |
|
kernel_size=(kernel_size[0], kernel_size[0]), |
|
padding=get_2d_padding((kernel_size[0], kernel_size[0])), |
|
norm=norm) |
|
|
|
def forward(self, x: torch.Tensor): |
|
fmap = [] |
|
z = self.spec_transform(x) |
|
z = torch.cat([z.real, z.imag], dim=1) |
|
z = rearrange(z, 'b c w t -> b c t w') |
|
for i, layer in enumerate(self.convs): |
|
z = layer(z) |
|
z = self.activation(z) |
|
fmap.append(z) |
|
z = self.conv_post(z) |
|
return z, fmap |
|
|
|
|
|
class MultiScaleSTFTDiscriminator(MultiDiscriminator): |
|
"""Multi-Scale STFT (MS-STFT) discriminator. |
|
|
|
Args: |
|
filters (int): Number of filters in convolutions. |
|
in_channels (int): Number of input channels. |
|
out_channels (int): Number of output channels. |
|
sep_channels (bool): Separate channels to distinct samples for stereo support. |
|
n_ffts (Sequence[int]): Size of FFT for each scale. |
|
hop_lengths (Sequence[int]): Length of hop between STFT windows for each scale. |
|
win_lengths (Sequence[int]): Window size for each scale. |
|
**kwargs: Additional args for STFTDiscriminator. |
|
""" |
|
def __init__(self, filters: int, in_channels: int = 1, out_channels: int = 1, sep_channels: bool = False, |
|
n_ffts: tp.List[int] = [1024, 2048, 512], hop_lengths: tp.List[int] = [256, 512, 128], |
|
win_lengths: tp.List[int] = [1024, 2048, 512], **kwargs): |
|
super().__init__() |
|
assert len(n_ffts) == len(hop_lengths) == len(win_lengths) |
|
self.sep_channels = sep_channels |
|
self.discriminators = nn.ModuleList([ |
|
DiscriminatorSTFT(filters, in_channels=in_channels, out_channels=out_channels, |
|
n_fft=n_ffts[i], win_length=win_lengths[i], hop_length=hop_lengths[i], **kwargs) |
|
for i in range(len(n_ffts)) |
|
]) |
|
|
|
@property |
|
def num_discriminators(self): |
|
return len(self.discriminators) |
|
|
|
def _separate_channels(self, x: torch.Tensor) -> torch.Tensor: |
|
B, C, T = x.shape |
|
return x.view(-1, 1, T) |
|
|
|
def forward(self, x: torch.Tensor) -> MultiDiscriminatorOutputType: |
|
logits = [] |
|
fmaps = [] |
|
for disc in self.discriminators: |
|
logit, fmap = disc(x) |
|
logits.append(logit) |
|
fmaps.append(fmap) |
|
return logits, fmaps |
|
|