|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import typing as tp |
|
|
|
import torch |
|
|
|
from .base import BaseQuantizer, QuantizedResult |
|
from .core_vq import ResidualVectorQuantization |
|
|
|
|
|
class ResidualVectorQuantizer(BaseQuantizer): |
|
"""Residual Vector Quantizer. |
|
|
|
Args: |
|
dimension (int): Dimension of the codebooks. |
|
n_q (int): Number of residual vector quantizers used. |
|
q_dropout (bool): Random quantizer drop out at train time. |
|
bins (int): Codebook size. |
|
decay (float): Decay for exponential moving average over the codebooks. |
|
kmeans_init (bool): Whether to use kmeans to initialize the codebooks. |
|
kmeans_iters (int): Number of iterations used for kmeans initialization. |
|
threshold_ema_dead_code (int): Threshold for dead code expiration. Replace any codes |
|
that have an exponential moving average cluster size less than the specified threshold with |
|
randomly selected vector from the current batch. |
|
orthogonal_reg_weight (float): Orthogonal regularization weights. |
|
orthogonal_reg_active_codes_only (bool): Apply orthogonal regularization only on active codes. |
|
orthogonal_reg_max_codes (optional int): Maximum number of codes to consider. |
|
for orthogonal regularization. |
|
""" |
|
def __init__( |
|
self, |
|
dimension: int = 256, |
|
n_q: int = 8, |
|
q_dropout: bool = False, |
|
bins: int = 1024, |
|
decay: float = 0.99, |
|
kmeans_init: bool = True, |
|
kmeans_iters: int = 10, |
|
threshold_ema_dead_code: int = 2, |
|
orthogonal_reg_weight: float = 0.0, |
|
orthogonal_reg_active_codes_only: bool = False, |
|
orthogonal_reg_max_codes: tp.Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.max_n_q = n_q |
|
self.n_q = n_q |
|
self.q_dropout = q_dropout |
|
self.dimension = dimension |
|
self.bins = bins |
|
self.decay = decay |
|
self.kmeans_init = kmeans_init |
|
self.kmeans_iters = kmeans_iters |
|
self.threshold_ema_dead_code = threshold_ema_dead_code |
|
self.orthogonal_reg_weight = orthogonal_reg_weight |
|
self.orthogonal_reg_active_codes_only = orthogonal_reg_active_codes_only |
|
self.orthogonal_reg_max_codes = orthogonal_reg_max_codes |
|
self.vq = ResidualVectorQuantization( |
|
dim=self.dimension, |
|
codebook_size=self.bins, |
|
num_quantizers=self.n_q, |
|
decay=self.decay, |
|
kmeans_init=self.kmeans_init, |
|
kmeans_iters=self.kmeans_iters, |
|
threshold_ema_dead_code=self.threshold_ema_dead_code, |
|
orthogonal_reg_weight=self.orthogonal_reg_weight, |
|
orthogonal_reg_active_codes_only=self.orthogonal_reg_active_codes_only, |
|
orthogonal_reg_max_codes=self.orthogonal_reg_max_codes, |
|
channels_last=False |
|
) |
|
|
|
def forward(self, x: torch.Tensor, frame_rate: int): |
|
n_q = self.n_q |
|
if self.training and self.q_dropout: |
|
n_q = int(torch.randint(1, self.n_q + 1, (1,)).item()) |
|
bw_per_q = math.log2(self.bins) * frame_rate / 1000 |
|
quantized, codes, commit_loss = self.vq(x, n_q=n_q) |
|
codes = codes.transpose(0, 1) |
|
|
|
bw = torch.tensor(n_q * bw_per_q).to(x) |
|
return QuantizedResult(quantized, codes, bw, penalty=torch.mean(commit_loss)) |
|
|
|
def encode(self, x: torch.Tensor) -> torch.Tensor: |
|
"""Encode a given input tensor with the specified frame rate at the given bandwidth. |
|
The RVQ encode method sets the appropriate number of quantizer to use |
|
and returns indices for each quantizer. |
|
""" |
|
n_q = self.n_q |
|
codes = self.vq.encode(x, n_q=n_q) |
|
codes = codes.transpose(0, 1) |
|
|
|
return codes |
|
|
|
def decode(self, codes: torch.Tensor) -> torch.Tensor: |
|
"""Decode the given codes to the quantized representation.""" |
|
|
|
codes = codes.transpose(0, 1) |
|
quantized = self.vq.decode(codes) |
|
return quantized |
|
|
|
@property |
|
def total_codebooks(self): |
|
return self.max_n_q |
|
|
|
@property |
|
def num_codebooks(self): |
|
return self.n_q |
|
|
|
def set_num_codebooks(self, n: int): |
|
assert n > 0 and n <= self.max_n_q |
|
self.n_q = n |
|
|