Spaces:
Runtime error
Runtime error
refactoring de requirements.txt
Browse files- src/inference_lstm.py +59 -0
src/inference_lstm.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Allows to predict the summary for a given entry text
|
3 |
+
using LSTM model
|
4 |
+
"""
|
5 |
+
import pickle
|
6 |
+
|
7 |
+
import torch
|
8 |
+
|
9 |
+
import dataloader
|
10 |
+
from model import Decoder, Encoder, EncoderDecoderModel
|
11 |
+
# from transformers import AutoModel
|
12 |
+
|
13 |
+
with open("model/vocab.pkl", "rb") as vocab:
|
14 |
+
words = pickle.load(vocab)
|
15 |
+
vectoriser = dataloader.Vectoriser(words)
|
16 |
+
|
17 |
+
|
18 |
+
def inferenceAPI(text: str) -> str:
|
19 |
+
"""
|
20 |
+
Predict the summary for an input text
|
21 |
+
--------
|
22 |
+
Parameter
|
23 |
+
text: str
|
24 |
+
the text to sumarize
|
25 |
+
Return
|
26 |
+
str
|
27 |
+
The summary for the input text
|
28 |
+
"""
|
29 |
+
text = text.split()
|
30 |
+
# On défini les paramètres d'entrée pour le modèle
|
31 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
32 |
+
encoder = Encoder(len(vectoriser.idx_to_token) + 1, 256, 512, 0.5, device)
|
33 |
+
encoder.to(device)
|
34 |
+
decoder = Decoder(len(vectoriser.idx_to_token) + 1, 256, 512, 0.5, device)
|
35 |
+
decoder.to(device)
|
36 |
+
|
37 |
+
# On instancie le modèle
|
38 |
+
model = EncoderDecoderModel(encoder, decoder, vectoriser, device)
|
39 |
+
# model = AutoModel.from_pretrained("EveSa/SummaryProject-LSTM")
|
40 |
+
|
41 |
+
# model.load_state_dict(torch.load("model/model.pt", map_location=device))
|
42 |
+
# model.eval()
|
43 |
+
# model.to(device)
|
44 |
+
|
45 |
+
# On vectorise le texte
|
46 |
+
source = vectoriser.encode(text)
|
47 |
+
source = source.to(device)
|
48 |
+
|
49 |
+
# On fait passer le texte dans le modèle
|
50 |
+
with torch.no_grad():
|
51 |
+
output = model(source).to(device)
|
52 |
+
output.to(device)
|
53 |
+
output = output.argmax(dim=-1)
|
54 |
+
return vectoriser.decode(output)
|
55 |
+
|
56 |
+
|
57 |
+
# if __name__ == "__main__":
|
58 |
+
# # inference()
|
59 |
+
# print(inferenceAPI("If you choose to use these attributes in logged messages, you need to exercise some care. In the above example, for instance, the Formatter has been set up with a format string which expects ‘clientip’ and ‘user’ in the attribute dictionary of the LogRecord. If these are missing, the message will not be logged because a string formatting exception will occur. So in this case, you always need to pass the extra dictionary with these keys."))
|