SummaryProject / src /fine_tune_T5.py
EveSa
Merge branch 'main' into Ling
4e410f4 unverified
raw
history blame
8.1 kB
import os
import re
import string
import contractions
import datasets
import evaluate
import pandas as pd
import torch
from datasets import Dataset
from tqdm import tqdm
from transformers import (AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer,
DataCollatorForSeq2Seq, Seq2SeqTrainer,
Seq2SeqTrainingArguments)
def clean_text(texts):
"""This fonction makes clean text for the future use"""
texts = texts.lower()
texts = contractions.fix(texts)
texts = texts.translate(str.maketrans("", "", string.punctuation))
texts = re.sub(r"\n", " ", texts)
return texts
def datasetmaker(path=str):
"""This fonction take the jsonl file, read it to a dataframe,
remove the colums not needed for the task and turn it into a file type Dataset
"""
data = pd.read_json(path, lines=True)
df = data.drop(
[
"url",
"archive",
"title",
"date",
"compression",
"coverage",
"density",
"compression_bin",
"coverage_bin",
"density_bin",
],
axis=1,
)
tqdm.pandas()
df["text"] = df.text.apply(lambda texts: clean_text(texts))
df["summary"] = df.summary.apply(lambda summary: clean_text(summary))
dataset = Dataset.from_dict(df)
return dataset
# voir si le model par hasard esr déjà bien
# test_text = dataset['text'][0]
# pipe = pipeline('summarization', model = model_ckpt)
# pipe_out = pipe(test_text)
# print(pipe_out[0]['summary_text'].replace('.<n>', '.\n'))
# print(dataset['summary'][0])
def generate_batch_sized_chunks(list_elements, batch_size):
"""this fonction split the dataset into smaller batches
that we can process simultaneously
Yield successive batch-sized chunks from list_of_elements."""
for i in range(0, len(list_elements), batch_size):
yield list_elements[i: i + batch_size]
def calculate_metric(dataset, metric, model, tokenizer,
batch_size, device,
column_text='text',
column_summary='summary'):
"""this fonction evaluate the model with metric rouge and
print a table of rouge scores rouge1', 'rouge2', 'rougeL', 'rougeLsum'"""
article_batches = list(
str(generate_batch_sized_chunks(dataset[column_text], batch_size))
)
target_batches = list(
str(generate_batch_sized_chunks(dataset[column_summary], batch_size))
)
for article_batch, target_batch in tqdm(
zip(article_batches, target_batches), total=len(article_batches)
):
inputs = tokenizer(
article_batch,
max_length=1024,
truncation=True,
padding="max_length",
return_tensors="pt",
)
# parameter for length penalty ensures that the model does not
# generate sequences that are too long.
summaries = model.generate(
input_ids=inputs["input_ids"].to(device),
attention_mask=inputs["attention_mask"].to(device),
length_penalty=0.8,
num_beams=8,
max_length=128,
)
# Décode les textes
# renplacer les tokens, ajouter des textes décodés avec les rédéfences
# vers la métrique.
decoded_summaries = [
tokenizer.decode(
s, skip_special_tokens=True, clean_up_tokenization_spaces=True
)
for s in summaries
]
decoded_summaries = [d.replace("", " ") for d in decoded_summaries]
metric.add_batch(
predictions=decoded_summaries,
references=target_batch)
# compute et return les ROUGE scores.
results = metric.compute()
rouge_names = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
rouge_dict = dict((rn, results[rn]) for rn in rouge_names)
return pd.DataFrame(rouge_dict, index=["T5"])
def convert_ex_to_features(example_batch):
"""this fonction takes for input a list of inputExemples and convert to InputFeatures"""
input_encodings = tokenizer(example_batch['text'],
max_length=1024, truncation=True)
labels = tokenizer(
example_batch["summary"],
max_length=128,
truncation=True)
return {
"input_ids": input_encodings["input_ids"],
"attention_mask": input_encodings["attention_mask"],
"labels": labels["input_ids"],
}
if __name__ == '__main__':
# réalisation des datasets propres
train_dataset = datasetmaker('data/train_extract.jsonl')
test_dataset = datasetmaker("data/test_extract.jsonl")
test_dataset = datasetmaker('data/test_extract.jsonl')
dataset = datasets.DatasetDict({'train': train_dataset,
'dev': dev_dataset, 'test': test_dataset})
# définition de device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# faire appel au model à entrainer
tokenizer = AutoTokenizer.from_pretrained('google/mt5-small')
mt5_config = AutoConfig.from_pretrained(
"google/mt5-small",
max_length=128,
length_penalty=0.6,
no_repeat_ngram_size=2,
num_beams=15,
)
model = (AutoModelForSeq2SeqLM
.from_pretrained('google/mt5-small', config=mt5_config)
.to(device))
#convertir les exemples en inputFeatures
dataset_pt = dataset.map(
convert_ex_to_features,
remove_columns=["summary", "text"],
batched=True,
batch_size=128,
)
data_collator = DataCollatorForSeq2Seq(
tokenizer, model=model, return_tensors="pt")
#définir les paramètres d'entrainement(fine tuning)
training_args = Seq2SeqTrainingArguments(
output_dir="t5_summary",
log_level="error",
num_train_epochs=10,
learning_rate=5e-4,
warmup_steps=0,
optim="adafactor",
weight_decay=0.01,
per_device_train_batch_size=2,
per_device_eval_batch_size=1,
gradient_accumulation_steps=16,
evaluation_strategy="steps",
eval_steps=100,
predict_with_generate=True,
generation_max_length=128,
save_steps=500,
logging_steps=10,
# push_to_hub = True
)
#donner au entraineur(trainer) le model
# et les éléments nécessaire pour l'entrainement
trainer = Seq2SeqTrainer(
model=model,
args=training_args,
data_collator=data_collator,
# compute_metrics = calculate_metric,
train_dataset=dataset_pt["train"],
eval_dataset=dataset_pt["dev"].select(range(10)),
tokenizer=tokenizer,
)
trainer.train()
rouge_metric = evaluate.load("rouge")
#évluer ensuite le model selon les résultats d'entrainement
score = calculate_metric(
test_dataset,
rouge_metric,
trainer.model,
tokenizer,
batch_size=2,
device=device,
column_text="text",
column_summary="summary",
)
print(score)
# Fine Tuning terminés et à sauvgarder
# sauvegarder fine-tuned model à local
os.makedirs("t5_summary", exist_ok=True)
if hasattr(trainer.model, "module"):
trainer.model.module.save_pretrained("t5_summary")
else:
trainer.model.save_pretrained("t5_summary")
tokenizer.save_pretrained("t5_summary")
# faire appel au model en local
model = (AutoModelForSeq2SeqLM
.from_pretrained("t5_summary")
.to(device))
# mettre en usage : TEST
# gen_kwargs = {"length_penalty" : 0.8, "num_beams" : 8, "max_length" : 128}
# sample_text = dataset["test"][0]["text"]
# reference = dataset["test"][0]["summary"]
# pipe = pipeline("summarization", model='./summarization_t5')
# print("Text :")
# print(sample_text)
# print("\nReference Summary :")
# print(reference)
# print("\nModel Summary :")
# print(pipe(sample_text, **gen_kwargs)[0]["summary_text"])