Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import gradio as gr | |
import sys | |
import os | |
import torch | |
import numpy as np | |
from os.path import join as pjoin | |
import utils.paramUtil as paramUtil | |
from utils.plot_script import * | |
from utils.utils import * | |
from utils.motion_process import recover_from_ric | |
from accelerate.utils import set_seed | |
from models.gaussian_diffusion import DiffusePipeline | |
from options.generate_options import GenerateOptions | |
from utils.model_load import load_model_weights | |
from motion_loader import get_dataset_loader | |
from models import build_models | |
import yaml | |
import time | |
from box import Box | |
import hashlib | |
from huggingface_hub import hf_hub_download | |
ckptdir = './checkpoints/t2m/release' | |
os.makedirs(ckptdir, exist_ok=True) | |
os.environ['GRADIO_TEMP_DIR']="temp" | |
os.environ['GRADIO_ALLOWED_PATHS']="temp" | |
mean_path = hf_hub_download( | |
repo_id="EvanTHU/MotionCLR", | |
filename="meta/mean.npy", | |
local_dir=ckptdir, | |
local_dir_use_symlinks=False | |
) | |
std_path = hf_hub_download( | |
repo_id="EvanTHU/MotionCLR", | |
filename="meta/std.npy", | |
local_dir=ckptdir, | |
local_dir_use_symlinks=False | |
) | |
model_path = hf_hub_download( | |
repo_id="EvanTHU/MotionCLR", | |
filename="model/latest.tar", | |
local_dir=ckptdir, | |
local_dir_use_symlinks=False | |
) | |
opt_path = hf_hub_download( | |
repo_id="EvanTHU/MotionCLR", | |
filename="opt.txt", | |
local_dir=ckptdir, | |
local_dir_use_symlinks=False | |
) | |
os.makedirs("temp", exist_ok=True) | |
def generate_md5(input_string): | |
# Encode the string and compute the MD5 hash | |
md5_hash = hashlib.md5(input_string.encode()) | |
# Return the hexadecimal representation of the hash | |
return md5_hash.hexdigest() | |
def set_all_use_to_false(data): | |
for key, value in data.items(): | |
if isinstance(value, Box): | |
set_all_use_to_false(value) | |
elif key == 'use': | |
data[key] = False | |
return data | |
def yaml_to_box(yaml_file): | |
with open(yaml_file, 'r') as file: | |
yaml_data = yaml.safe_load(file) | |
return Box(yaml_data) | |
HEAD = ("""<div> | |
<div class="embed_hidden" style="text-align: center;"> | |
<h1>MotionCLR: Motion Generation and Training-free Editing via Understanding Attention Mechanisms</h1> | |
<h2>MotionCLR v1-preview Demo</h2> | |
<h3> | |
<a href="https://lhchen.top" target="_blank" rel="noopener noreferrer">Ling-Hao Chen</a><sup>1, 2</sup>, | |
<a href="https://https://github.com/Dai-Wenxun" target="_blank" rel="noopener noreferrer">Wenxun Dai</a><sup>1</sup>, | |
<a href="https://juxuan27.github.io/" target="_blank" rel="noopener noreferrer">Xuan Ju</a><sup>3</sup>, | |
<a href="https://shunlinlu.github.io" target="_blank" rel="noopener noreferrer">Shunlin Lu</a><sup>4</sup>, | |
<a href="https://leizhang.org" target="_blank" rel="noopener noreferrer">Lei Zhang</a><sup>2 π€</sup> | |
</h3> | |
<h3><sup>π€</sup><i>Corresponding author.</i></h3> | |
<h3> | |
<sup>1</sup>THU   | |
<sup>2</sup>IDEA Research   | |
<sup>3</sup>CUHK   | |
<sup>4</sup>CUHK (SZ) | |
</h3> | |
</div> | |
<div style="display:flex; gap: 0.3rem; justify-content: center; align-items: center;" align="center"> | |
<a href='https://arxiv.org/abs/2410.18977'><img src='https://img.shields.io/badge/Arxiv-2410.18977-A42C25?style=flat&logo=arXiv&logoColor=A42C25'></a> | |
<a href='https://arxiv.org/pdf/2410.18977.pdf'><img src='https://img.shields.io/badge/Paper-PDF-yellow?style=flat&logo=arXiv&logoColor=yellow'></a> | |
<a href='https://lhchen.top/MotionCLR'><img src='https://img.shields.io/badge/Project-Page-%23df5b46?style=flat&logo=Google%20chrome&logoColor=%23df5b46'></a> | |
<a href='https://huggingface.co/blog/EvanTHU/motionclr-blog'><img src='https://img.shields.io/badge/Blog-post-4EABE6?style=flat&logoColor=4EABE6'></a> | |
<a href='https://github.com/IDEA-Research/MotionCLR'><img src='https://img.shields.io/badge/GitHub-Code-black?style=flat&logo=github&logoColor=white'></a> | |
<a href='https://huggingface.co/spaces/EvanTHU/MotionCLR'><img src='https://img.shields.io/badge/gradio-demo-red.svg'></a> | |
<a href='LICENSE'><img src='https://img.shields.io/badge/License-IDEA-blue.svg'></a> | |
<a href="https://huggingface.co/spaces/EvanTHU/MotionCLR" target='_blank'><img src="https://visitor-badge.laobi.icu/badge?page_id=IDEA-Research.MotionCLR&left_color=gray&right_color=%2342b983"></a> | |
</div> | |
</div> | |
""") | |
edit_config = yaml_to_box('options/edit.yaml') | |
CSS = """ | |
.retrieved_video { | |
position: relative; | |
margin: 0; | |
box-shadow: var(--block-shadow); | |
border-width: var(--block-border-width); | |
border-color: #000000; | |
border-radius: var(--block-radius); | |
background: var(--block-background-fill); | |
width: 100%; | |
line-height: var(--line-sm); | |
} | |
.contour_video { | |
display: flex; | |
flex-direction: column; | |
justify-content: center; | |
align-items: center; | |
z-index: var(--layer-5); | |
border-radius: var(--block-radius); | |
background: var(--background-fill-primary); | |
padding: 0 var(--size-6); | |
max-height: var(--size-screen-h); | |
overflow: hidden; | |
} | |
""" | |
def generate_video_from_text(text, opt, pipeline): | |
global edit_config | |
gr.Info("Loading Configurations...", duration = 3) | |
model = build_models(opt, edit_config=edit_config) | |
ckpt_path = pjoin(opt.model_dir, opt.which_ckpt + '.tar') | |
niter = load_model_weights(model, ckpt_path, use_ema=not opt.no_ema) | |
pipeline = DiffusePipeline( | |
opt = opt, | |
model = model, | |
diffuser_name = opt.diffuser_name, | |
device=opt.device, | |
num_inference_steps=opt.num_inference_steps, | |
torch_dtype=torch.float16, | |
) | |
width = 500 | |
height = 500 | |
texts = [text, text] | |
motion_lens = [opt.motion_length * opt.fps, opt.motion_length * opt.fps] | |
save_dir = 'temp/' | |
filename = generate_md5(str(time.time())) + ".gif" | |
save_path = pjoin(save_dir, str(filename)) | |
os.makedirs(save_dir, exist_ok=True) | |
print("xxxxxxx") | |
print(texts) | |
print(motion_lens) | |
print("xxxxxxx") | |
start_time = time.perf_counter() | |
gr.Info("Generating motion...", duration = 3) | |
pred_motions, _ = pipeline.generate(texts, torch.LongTensor([int(x) for x in motion_lens])) | |
end_time = time.perf_counter() | |
exc = end_time - start_time | |
gr.Info(f"Generating time cost: {exc:.2f} s, rendering starts...", duration = 3) | |
start_time = time.perf_counter() | |
mean = np.load(pjoin(opt.meta_dir, 'mean.npy')) | |
std = np.load(pjoin(opt.meta_dir, 'std.npy')) | |
print(mean) | |
print(std) | |
print(pred_motions) | |
samples = [] | |
root_list = [] | |
for i, motion in enumerate(pred_motions): | |
motion = motion.cpu().numpy() * std + mean | |
# 1. recover 3d joints representation by ik | |
motion = recover_from_ric(torch.from_numpy(motion).float(), opt.joints_num) | |
# 2. put on Floor (Y axis) | |
floor_height = motion.min(dim=0)[0].min(dim=0)[0][1] | |
motion[:, :, 1] -= floor_height | |
motion = motion.numpy() | |
# 3. remove jitter | |
motion = motion_temporal_filter(motion, sigma=1) | |
samples.append(motion) | |
i = 1 | |
title = texts[i] | |
motion = samples[i] | |
kinematic_tree = paramUtil.t2m_kinematic_chain if (opt.dataset_name == 't2m') else paramUtil.kit_kinematic_chain | |
plot_3d_motion(save_path, kinematic_tree, motion, title=title, fps=opt.fps, radius=opt.radius) | |
gr.Info("Rendered motion...", duration = 3) | |
end_time = time.perf_counter() | |
exc = end_time - start_time | |
gr.Info(f"Rendering time cost: {exc:.2f} s", duration = 3) | |
video_dis = f'<img src="/gradio_api/file={save_path}" width="{width}" style="display: block; margin: 0 auto;">' | |
style_dis = video_dis | |
return video_dis, style_dis, video_dis, gr.update(visible=True) | |
def reweighting(text, idx, weight, opt, pipeline): | |
global edit_config | |
edit_config.reweighting_attn.use = True | |
edit_config.reweighting_attn.idx = idx | |
edit_config.reweighting_attn.reweighting_attn_weight = weight | |
gr.Info("Loading Configurations...", duration = 3) | |
model = build_models(opt, edit_config=edit_config) | |
ckpt_path = pjoin(opt.model_dir, opt.which_ckpt + '.tar') | |
niter = load_model_weights(model, ckpt_path, use_ema=not opt.no_ema) | |
pipeline = DiffusePipeline( | |
opt = opt, | |
model = model, | |
diffuser_name = opt.diffuser_name, | |
device=opt.device, | |
num_inference_steps=opt.num_inference_steps, | |
torch_dtype=torch.float16, | |
) | |
print(edit_config) | |
width = 500 | |
height = 500 | |
texts = [text, text] | |
motion_lens = [opt.motion_length * opt.fps for _ in range(opt.num_samples)] | |
save_dir = 'temp/' | |
filenames = [generate_md5(str(time.time())) + ".gif", generate_md5(str(time.time())) + ".gif"] | |
save_paths = [pjoin(save_dir, str(filenames[0])), pjoin(save_dir, str(filenames[1]))] | |
os.makedirs(save_dir, exist_ok=True) | |
start_time = time.perf_counter() | |
gr.Info("Generating motion...", duration = 3) | |
pred_motions, _ = pipeline.generate(texts, torch.LongTensor([int(x) for x in motion_lens])) | |
end_time = time.perf_counter() | |
exc = end_time - start_time | |
gr.Info(f"Generating time cost: {exc:.2f} s, rendering starts...", duration = 3) | |
start_time = time.perf_counter() | |
mean = np.load(pjoin(opt.meta_dir, 'mean.npy')) | |
std = np.load(pjoin(opt.meta_dir, 'std.npy')) | |
samples = [] | |
root_list = [] | |
for i, motion in enumerate(pred_motions): | |
motion = motion.cpu().numpy() * std + mean | |
# 1. recover 3d joints representation by ik | |
motion = recover_from_ric(torch.from_numpy(motion).float(), opt.joints_num) | |
# 2. put on Floor (Y axis) | |
floor_height = motion.min(dim=0)[0].min(dim=0)[0][1] | |
motion[:, :, 1] -= floor_height | |
motion = motion.numpy() | |
# 3. remove jitter | |
motion = motion_temporal_filter(motion, sigma=1) | |
samples.append(motion) | |
i = 1 | |
title = texts[i] | |
motion = samples[i] | |
kinematic_tree = paramUtil.t2m_kinematic_chain if (opt.dataset_name == 't2m') else paramUtil.kit_kinematic_chain | |
plot_3d_motion(save_paths[1], kinematic_tree, motion, title=title, fps=opt.fps, radius=opt.radius) | |
gr.Info("Rendered motion...", duration = 3) | |
end_time = time.perf_counter() | |
exc = end_time - start_time | |
gr.Info(f"Rendering time cost: {exc:.2f} s", duration = 3) | |
video_dis = f'<img width="{width}" style="display: block; margin: 0 auto;" src="/gradio_api/file={save_paths[1]}">' | |
edit_config = set_all_use_to_false(edit_config) | |
return video_dis | |
def generate_example_based_motion(text, chunk_size, example_based_steps_end, temp_seed, temp_seed_bar, num_motion, opt, pipeline): | |
global edit_config | |
edit_config.example_based.use = True | |
edit_config.example_based.chunk_size = chunk_size | |
edit_config.example_based.example_based_steps_end = example_based_steps_end | |
edit_config.example_based.temp_seed = temp_seed | |
edit_config.example_based.temp_seed_bar = temp_seed_bar | |
gr.Info("Loading Configurations...", duration = 3) | |
model = build_models(opt, edit_config=edit_config) | |
ckpt_path = pjoin(opt.model_dir, opt.which_ckpt + '.tar') | |
niter = load_model_weights(model, ckpt_path, use_ema=not opt.no_ema) | |
pipeline = DiffusePipeline( | |
opt = opt, | |
model = model, | |
diffuser_name = opt.diffuser_name, | |
device=opt.device, | |
num_inference_steps=opt.num_inference_steps, | |
torch_dtype=torch.float16, | |
) | |
width = 500 | |
height = 500 | |
texts = [text for _ in range(num_motion)] | |
motion_lens = [opt.motion_length * opt.fps for _ in range(opt.num_samples)] | |
save_dir = 'temp/' | |
filenames = [generate_md5(str(time.time())) + ".gif" for _ in range(num_motion)] | |
save_paths = [pjoin(save_dir, str(filenames[i])) for i in range(num_motion)] | |
os.makedirs(save_dir, exist_ok=True) | |
start_time = time.perf_counter() | |
gr.Info("Generating motion...", duration = 3) | |
pred_motions, _ = pipeline.generate(texts, torch.LongTensor([int(x) for x in motion_lens])) | |
end_time = time.perf_counter() | |
exc = end_time - start_time | |
gr.Info(f"Generating time cost: {exc:.2f} s, rendering starts...", duration = 3) | |
start_time = time.perf_counter() | |
mean = np.load(pjoin(opt.meta_dir, 'mean.npy')) | |
std = np.load(pjoin(opt.meta_dir, 'std.npy')) | |
samples = [] | |
root_list = [] | |
progress=gr.Progress() | |
progress(0, desc="Starting...") | |
for i, motion in enumerate(pred_motions): | |
motion = motion.cpu().numpy() * std + mean | |
# 1. recover 3d joints representation by ik | |
motion = recover_from_ric(torch.from_numpy(motion).float(), opt.joints_num) | |
# 2. put on Floor (Y axis) | |
floor_height = motion.min(dim=0)[0].min(dim=0)[0][1] | |
motion[:, :, 1] -= floor_height | |
motion = motion.numpy() | |
# 3. remove jitter | |
motion = motion_temporal_filter(motion, sigma=1) | |
samples.append(motion) | |
video_dis = [] | |
i = 0 | |
for title in progress.tqdm(texts): | |
print(save_paths[i]) | |
title = texts[i] | |
motion = samples[i] | |
kinematic_tree = paramUtil.t2m_kinematic_chain if (opt.dataset_name == 't2m') else paramUtil.kit_kinematic_chain | |
plot_3d_motion(save_paths[i], kinematic_tree, motion, title=title, fps=opt.fps, radius=opt.radius) | |
video_html = f''' | |
<img class="retrieved_video" width="{width}" height="{height}" preload="auto" src="/gradio_api/file={save_paths[i]}"> | |
''' | |
video_dis.append(video_html) | |
i += 1 | |
for _ in range(24 - num_motion): | |
video_dis.append(None) | |
gr.Info("Rendered motion...", duration = 3) | |
end_time = time.perf_counter() | |
exc = end_time - start_time | |
gr.Info(f"Rendering time cost: {exc:.2f} s", duration = 3) | |
edit_config = set_all_use_to_false(edit_config) | |
return video_dis | |
def transfer_style(text, style_text, style_transfer_steps_end, opt, pipeline): | |
global edit_config | |
edit_config.style_tranfer.use = True | |
edit_config.style_tranfer.style_transfer_steps_end = style_transfer_steps_end | |
gr.Info("Loading Configurations...", duration = 3) | |
model = build_models(opt, edit_config=edit_config) | |
ckpt_path = pjoin(opt.model_dir, opt.which_ckpt + '.tar') | |
niter = load_model_weights(model, ckpt_path, use_ema=not opt.no_ema) | |
pipeline = DiffusePipeline( | |
opt = opt, | |
model = model, | |
diffuser_name = opt.diffuser_name, | |
device=opt.device, | |
num_inference_steps=opt.num_inference_steps, | |
torch_dtype=torch.float16, | |
) | |
print(edit_config) | |
width = 500 | |
height = 500 | |
texts = [style_text, text, text] | |
motion_lens = [opt.motion_length * opt.fps for _ in range(opt.num_samples)] | |
save_dir = 'temp/' | |
filenames = [generate_md5(str(time.time())) + ".gif", generate_md5(str(time.time())) + ".gif", generate_md5(str(time.time())) + ".gif"] | |
save_paths = [pjoin(save_dir, str(filenames[0])), pjoin(save_dir, str(filenames[1])), pjoin(save_dir, str(filenames[2]))] | |
os.makedirs(save_dir, exist_ok=True) | |
start_time = time.perf_counter() | |
gr.Info("Generating motion...", duration = 3) | |
pred_motions, _ = pipeline.generate(texts, torch.LongTensor([int(x) for x in motion_lens])) | |
end_time = time.perf_counter() | |
exc = end_time - start_time | |
gr.Info(f"Generating time cost: {exc:.2f} s, rendering starts...", duration = 3) | |
start_time = time.perf_counter() | |
mean = np.load(pjoin(opt.meta_dir, 'mean.npy')) | |
std = np.load(pjoin(opt.meta_dir, 'std.npy')) | |
samples = [] | |
root_list = [] | |
for i, motion in enumerate(pred_motions): | |
motion = motion.cpu().numpy() * std + mean | |
# 1. recover 3d joints representation by ik | |
motion = recover_from_ric(torch.from_numpy(motion).float(), opt.joints_num) | |
# 2. put on Floor (Y axis) | |
floor_height = motion.min(dim=0)[0].min(dim=0)[0][1] | |
motion[:, :, 1] -= floor_height | |
motion = motion.numpy() | |
# 3. remove jitter | |
motion = motion_temporal_filter(motion, sigma=1) | |
samples.append(motion) | |
for i,title in enumerate(texts): | |
title = texts[i] | |
motion = samples[i] | |
kinematic_tree = paramUtil.t2m_kinematic_chain if (opt.dataset_name == 't2m') else paramUtil.kit_kinematic_chain | |
plot_3d_motion(save_paths[i], kinematic_tree, motion, title=title, fps=opt.fps, radius=opt.radius) | |
gr.Info("Rendered motion...", duration = 3) | |
end_time = time.perf_counter() | |
exc = end_time - start_time | |
gr.Info(f"Rendering time cost: {exc:.2f} s", duration = 3) | |
video_dis0 = f"""<img width="{width}" style="display: block; margin: 0 auto;" src="/gradio_api/file={save_paths[0]}"> <br> <p align="center"> Style Reference </p>""" | |
video_dis1 = f"""<img width="{width}" style="display: block; margin: 0 auto;" src="/gradio_api/file={save_paths[2]}"> <br> <p align="center"> Content Reference </p>""" | |
video_dis2 = f"""<img width="{width}" style="display: block; margin: 0 auto;" src="/gradio_api/file={save_paths[1]}"> <br> <p align="center"> Transfered Result </p>""" | |
edit_config = set_all_use_to_false(edit_config) | |
return video_dis0, video_dis2 | |
def main(): | |
parser = GenerateOptions() | |
opt = parser.parse_app() | |
set_seed(opt.seed) | |
device_id = opt.gpu_id | |
device = torch.device('cuda:%d' % device_id if torch.cuda.is_available() else 'cpu') | |
opt.device = device | |
print(device) | |
# load model | |
model = build_models(opt, edit_config=edit_config) | |
ckpt_path = pjoin(opt.model_dir, opt.which_ckpt + '.tar') | |
niter = load_model_weights(model, ckpt_path, use_ema=not opt.no_ema) | |
pipeline = DiffusePipeline( | |
opt = opt, | |
model = model, | |
diffuser_name = opt.diffuser_name, | |
device=device, | |
num_inference_steps=opt.num_inference_steps, | |
torch_dtype=torch.float16, | |
) | |
with gr.Blocks(theme=gr.themes.Glass()) as demo: | |
gr.HTML(HEAD) | |
with gr.Row(): | |
with gr.Column(scale=7): | |
text_input = gr.Textbox(label="Input the text prompt to generate motion...") | |
with gr.Column(scale=3): | |
sequence_length = gr.Slider(minimum=1, maximum=9.6, step=0.1, label="Motion length", value=8) | |
with gr.Row(): | |
generate_button = gr.Button("Generate motion") | |
with gr.Row(): | |
video_display = gr.HTML(label="Generated motion", visible=True) | |
tabs = gr.Tabs(visible=False) | |
with tabs: | |
emph_tab = gr.Tab("Motion (de-)emphasizing", visible=False) | |
with emph_tab: | |
with gr.Row(): | |
int_input = gr.Number(label="Editing word index", minimum=0, maximum=70) | |
weight_input = gr.Slider(minimum=-1, maximum=1, step=0.01, label="Input weight for (de-)emphasizing [-1, 1]", value=0) | |
trim_button = gr.Button("Edit Motion") | |
with gr.Row(): | |
original_video1 = gr.HTML(label="before editing", visible=False) | |
edited_video = gr.HTML(label="after editing") | |
trim_button.click( | |
fn=lambda x, int_input, weight_input : reweighting(x, int_input, weight_input, opt, pipeline), | |
inputs=[text_input, int_input, weight_input], | |
outputs=edited_video, | |
) | |
exp_tab = gr.Tab("Example-based motion genration", visible=False) | |
with exp_tab: | |
with gr.Row(): | |
with gr.Column(scale=4): | |
chunk_size = gr.Number(minimum=10, maximum=20, step=10,label="Chunk size (#frames)", value=20) | |
example_based_steps_end = gr.Number(minimum=0, maximum=9,label="Ending step of manipulation", value=6) | |
with gr.Column(scale=3): | |
temp_seed = gr.Number(label="Seed for random", value=200, minimum=0) | |
temp_seed_bar = gr.Slider(minimum=0, maximum=100, step=1, label="Seed for random bar", value=15) | |
with gr.Column(scale=3): | |
num_motion = gr.Radio(choices=[4, 8, 12, 16, 24], value=8, label="Select number of motions") | |
gen_button = gr.Button("Generate example-based motion") | |
example_video_display = [] | |
for _ in range(6): | |
with gr.Row(): | |
for _ in range(4): | |
video = gr.HTML(label="Example-based motion", visible=True) | |
example_video_display.append(video) | |
gen_button.click( | |
fn=lambda text, chunk_size, example_based_steps_end, temp_seed, temp_seed_bar, num_motion: generate_example_based_motion(text, chunk_size, example_based_steps_end, temp_seed, temp_seed_bar, num_motion, opt, pipeline), | |
inputs=[text_input, chunk_size, example_based_steps_end, temp_seed, temp_seed_bar, num_motion], | |
outputs=example_video_display | |
) | |
trans_tab = gr.Tab("Style transfer", visible=False) | |
with trans_tab: | |
with gr.Row(): | |
style_text = gr.Textbox(label="Reference prompt (e.g. 'a man walks.')", value="a man walks.") | |
style_transfer_steps_end = gr.Number(label="The end step of diffusion (0~9)", minimum=0, maximum=9, value=5) | |
style_transfer_button = gr.Button("Transfer style") | |
with gr.Row(): | |
style_reference = gr.HTML(label="style reference") | |
original_video4 = gr.HTML(label="before style transfer", visible=False) | |
styled_video = gr.HTML(label="after style transfer") | |
style_transfer_button.click( | |
fn=lambda text, style_text, style_transfer_steps_end: transfer_style(text, style_text, style_transfer_steps_end, opt, pipeline), | |
inputs=[text_input, style_text, style_transfer_steps_end], | |
outputs=[style_reference, styled_video], | |
) | |
def update_motion_length(sequence_length): | |
opt.motion_length = sequence_length | |
def on_generate(text, length, pipeline): | |
update_motion_length(length) | |
return generate_video_from_text(text, opt, pipeline) | |
generate_button.click( | |
fn=lambda text, length: on_generate(text, length, pipeline), | |
inputs=[text_input, sequence_length], | |
outputs=[ | |
video_display, | |
original_video1, | |
original_video4, | |
tabs, | |
], | |
show_progress=True | |
).then( | |
fn=lambda: [gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)], | |
inputs=None, | |
outputs=[video_display, original_video1, original_video4, emph_tab, exp_tab, trans_tab] | |
) | |
demo.launch() | |
if __name__ == '__main__': | |
main() |