Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
from .ema import ExponentialMovingAverage | |
def load_model_weights(model, ckpt_path, use_ema=True, device='cuda:0'): | |
""" | |
Load weights of a model from a checkpoint file. | |
Args: | |
model (torch.nn.Module): The model to load weights into. | |
ckpt_path (str): Path to the checkpoint file. | |
use_ema (bool): Whether to use Exponential Moving Average (EMA) weights if available. | |
""" | |
checkpoint = torch.load(ckpt_path,map_location={'cuda:0': str(device)}) | |
total_iter = checkpoint.get('total_it', 0) | |
if "model_ema" in checkpoint and use_ema: | |
ema_key = next(iter(checkpoint["model_ema"])) | |
if ('module' in ema_key) or ('n_averaged' in ema_key): | |
model = ExponentialMovingAverage(model, decay=1.0) | |
model.load_state_dict(checkpoint["model_ema"], strict=True) | |
if ('module' in ema_key) or ('n_averaged' in ema_key): | |
model = model.module | |
print(f'\nLoading EMA module model from {ckpt_path} with {total_iter} iterations') | |
else: | |
print(f'\nLoading EMA model from {ckpt_path} with {total_iter} iterations') | |
else: | |
model.load_state_dict(checkpoint['encoder'], strict=True) | |
print(f'\nLoading model from {ckpt_path} with {total_iter} iterations') | |
return total_iter |