Spaces:
Running
on
Zero
Running
on
Zero
import numpy as np | |
from scipy import linalg | |
def euclidean_distance_matrix(matrix1, matrix2): | |
""" | |
Params: | |
-- matrix1: N1 x D | |
-- matrix2: N2 x D | |
Returns: | |
-- dist: N1 x N2 | |
dist[i, j] == distance(matrix1[i], matrix2[j]) | |
""" | |
assert matrix1.shape[1] == matrix2.shape[1] | |
d1 = -2 * np.dot(matrix1, matrix2.T) # shape (num_test, num_train) | |
d2 = np.sum(np.square(matrix1), axis=1, keepdims=True) # shape (num_test, 1) | |
d3 = np.sum(np.square(matrix2), axis=1) # shape (num_train, ) | |
dists = np.sqrt(d1 + d2 + d3) # broadcasting | |
return dists | |
def calculate_top_k(mat, top_k): | |
size = mat.shape[0] | |
gt_mat = np.expand_dims(np.arange(size), 1).repeat(size, 1) | |
bool_mat = (mat == gt_mat) | |
correct_vec = False | |
top_k_list = [] | |
for i in range(top_k): | |
correct_vec = (correct_vec | bool_mat[:, i]) | |
top_k_list.append(correct_vec[:, None]) | |
top_k_mat = np.concatenate(top_k_list, axis=1) | |
return top_k_mat | |
def calculate_R_precision(embedding1, embedding2, top_k, sum_all=False): | |
dist_mat = euclidean_distance_matrix(embedding1, embedding2) | |
argmax = np.argsort(dist_mat, axis=1) | |
top_k_mat = calculate_top_k(argmax, top_k) | |
if sum_all: | |
return top_k_mat.sum(axis=0) | |
else: | |
return top_k_mat | |
def calculate_matching_score(embedding1, embedding2, sum_all=False): | |
assert len(embedding1.shape) == 2 | |
assert embedding1.shape[0] == embedding2.shape[0] | |
assert embedding1.shape[1] == embedding2.shape[1] | |
dist = linalg.norm(embedding1 - embedding2, axis=1) | |
if sum_all: | |
return dist.sum(axis=0) | |
else: | |
return dist | |
def calculate_activation_statistics(activations): | |
""" | |
Params: | |
-- activation: num_samples x dim_feat | |
Returns: | |
-- mu: dim_feat | |
-- sigma: dim_feat x dim_feat | |
""" | |
mu = np.mean(activations, axis=0) | |
cov = np.cov(activations, rowvar=False) | |
return mu, cov | |
def calculate_diversity(activation, diversity_times): | |
assert len(activation.shape) == 2 | |
assert activation.shape[0] > diversity_times | |
num_samples = activation.shape[0] | |
first_indices = np.random.choice(num_samples, diversity_times, replace=False) | |
second_indices = np.random.choice(num_samples, diversity_times, replace=False) | |
dist = linalg.norm(activation[first_indices] - activation[second_indices], axis=1) | |
return dist.mean() | |
def calculate_multimodality(activation, multimodality_times): | |
assert len(activation.shape) == 3 | |
assert activation.shape[1] > multimodality_times | |
num_per_sent = activation.shape[1] | |
first_dices = np.random.choice(num_per_sent, multimodality_times, replace=False) | |
second_dices = np.random.choice(num_per_sent, multimodality_times, replace=False) | |
dist = linalg.norm(activation[:, first_dices] - activation[:, second_dices], axis=2) | |
return dist.mean() | |
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
"""Numpy implementation of the Frechet Distance. | |
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
and X_2 ~ N(mu_2, C_2) is | |
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
Stable version by Dougal J. Sutherland. | |
Params: | |
-- mu1 : Numpy array containing the activations of a layer of the | |
inception net (like returned by the function 'get_predictions') | |
for generated samples. | |
-- mu2 : The sample mean over activations, precalculated on an | |
representative data set. | |
-- sigma1: The covariance matrix over activations for generated samples. | |
-- sigma2: The covariance matrix over activations, precalculated on an | |
representative data set. | |
Returns: | |
-- : The Frechet Distance. | |
""" | |
mu1 = np.atleast_1d(mu1) | |
mu2 = np.atleast_1d(mu2) | |
sigma1 = np.atleast_2d(sigma1) | |
sigma2 = np.atleast_2d(sigma2) | |
assert mu1.shape == mu2.shape, \ | |
'Training and test mean vectors have different lengths' | |
assert sigma1.shape == sigma2.shape, \ | |
'Training and test covariances have different dimensions' | |
diff = mu1 - mu2 | |
# Product might be almost singular | |
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
if not np.isfinite(covmean).all(): | |
msg = ('fid calculation produces singular product; ' | |
'adding %s to diagonal of cov estimates') % eps | |
print(msg) | |
offset = np.eye(sigma1.shape[0]) * eps | |
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
# Numerical error might give slight imaginary component | |
if np.iscomplexobj(covmean): | |
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
m = np.max(np.abs(covmean.imag)) | |
raise ValueError('Imaginary component {}'.format(m)) | |
covmean = covmean.real | |
tr_covmean = np.trace(covmean) | |
return (diff.dot(diff) + np.trace(sigma1) + | |
np.trace(sigma2) - 2 * tr_covmean) |