Spaces:
Paused
Paused
Update app_wan.py
Browse files- app_wan.py +49 -130
app_wan.py
CHANGED
|
@@ -5,62 +5,20 @@ import gradio as gr
|
|
| 5 |
import tempfile
|
| 6 |
import numpy as np
|
| 7 |
from PIL import Image
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# === Constantes (espelhando o app original) ===
|
| 11 |
-
MODEL_ID = "Wan-AI/Wan2.2-I2V-A14B-Diffusers"
|
| 12 |
-
MAX_DIMENSION = 832
|
| 13 |
-
MIN_DIMENSION = 480
|
| 14 |
-
DIMENSION_MULTIPLE = 16
|
| 15 |
-
SQUARE_SIZE = 480
|
| 16 |
MAX_SEED = np.iinfo(np.int32).max
|
| 17 |
FIXED_FPS = 16
|
| 18 |
MIN_FRAMES_MODEL = 8
|
| 19 |
MAX_FRAMES_MODEL = 81
|
| 20 |
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
|
| 21 |
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
|
| 22 |
-
default_negative_prompt = (
|
| 23 |
-
"色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,"
|
| 24 |
-
"JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,"
|
| 25 |
-
"手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走,过曝,"
|
| 26 |
-
)
|
| 27 |
|
| 28 |
# === Importa o serviço de geração (manager) ===
|
| 29 |
from aduc_framework.managers.wan_manager import WanManager
|
| 30 |
wan_manager = WanManager()
|
| 31 |
|
| 32 |
-
# ===
|
| 33 |
-
def switch_to_upload_tab():
|
| 34 |
-
return gr.Tabs.update(selected="upload_tab")
|
| 35 |
-
|
| 36 |
-
def generate_end_frame(start_img, gen_prompt, progress=gr.Progress(track_tqdm=True)):
|
| 37 |
-
if start_img is None:
|
| 38 |
-
raise gr.Error("Please provide a Start Frame first.")
|
| 39 |
-
hf_token = os.getenv("HF_TOKEN")
|
| 40 |
-
if not hf_token:
|
| 41 |
-
raise gr.Error("HF_TOKEN not found in environment variables. Please set it in your Space secrets.")
|
| 42 |
-
with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmpfile:
|
| 43 |
-
start_img.save(tmpfile.name)
|
| 44 |
-
tmp_path = tmpfile.name
|
| 45 |
-
progress(0.1, desc="Connecting to image generation API...")
|
| 46 |
-
client = Client("multimodalart/nano-banana")
|
| 47 |
-
progress(0.5, desc=f"Generating with prompt: '{gen_prompt}'...")
|
| 48 |
-
try:
|
| 49 |
-
result = client.predict(
|
| 50 |
-
prompt=gen_prompt,
|
| 51 |
-
images=[{"image": handle_file(tmp_path)}],
|
| 52 |
-
manual_token=hf_token,
|
| 53 |
-
api_name="/unified_image_generator",
|
| 54 |
-
)
|
| 55 |
-
finally:
|
| 56 |
-
try:
|
| 57 |
-
os.remove(tmp_path)
|
| 58 |
-
except:
|
| 59 |
-
pass
|
| 60 |
-
progress(1.0, desc="Done!")
|
| 61 |
-
return result
|
| 62 |
-
|
| 63 |
-
# Wrapper: a UI monta images_condition_items e delega ao serviço
|
| 64 |
def ui_generate_video(
|
| 65 |
start_image_pil,
|
| 66 |
start_frame_text,
|
|
@@ -71,13 +29,13 @@ def ui_generate_video(
|
|
| 71 |
end_frame_text,
|
| 72 |
end_peso,
|
| 73 |
prompt,
|
| 74 |
-
negative_prompt
|
| 75 |
-
duration_seconds
|
| 76 |
-
steps
|
| 77 |
-
guidance_scale
|
| 78 |
-
guidance_scale_2
|
| 79 |
-
seed
|
| 80 |
-
randomize_seed
|
| 81 |
progress=gr.Progress(track_tqdm=True),
|
| 82 |
):
|
| 83 |
def to_int_safe(v, default=0):
|
|
@@ -87,15 +45,14 @@ def ui_generate_video(
|
|
| 87 |
try: return float(v)
|
| 88 |
except: return default
|
| 89 |
|
|
|
|
| 90 |
start_item = [start_image_pil, to_int_safe(start_frame_text, 0), 1.0]
|
| 91 |
-
|
| 92 |
items = [start_item]
|
| 93 |
if handle_image_pil is not None:
|
| 94 |
-
items.append([handle_image_pil, to_int_safe(handle_frame_text,
|
| 95 |
-
|
| 96 |
items.append([end_image_pil, to_int_safe(end_frame_text, MAX_FRAMES_MODEL - 1), to_float_safe(end_peso, 1.0)])
|
| 97 |
|
| 98 |
-
#
|
| 99 |
video_path, current_seed, debug_video_path, grid_image_path = wan_manager.generate_video_from_conditions(
|
| 100 |
images_condition_items=items,
|
| 101 |
prompt=prompt,
|
|
@@ -108,86 +65,75 @@ def ui_generate_video(
|
|
| 108 |
randomize_seed=bool(randomize_seed),
|
| 109 |
)
|
| 110 |
|
| 111 |
-
#
|
| 112 |
return video_path, current_seed, debug_video_path, grid_image_path
|
| 113 |
|
| 114 |
-
# ===
|
| 115 |
css = '''
|
| 116 |
.fillable{max-width: 1100px !important}
|
| 117 |
.dark .progress-text {color: white}
|
| 118 |
#general_items{margin-top: 2em}
|
| 119 |
-
#group_all{overflow:visible}
|
| 120 |
-
#group_all .styler{overflow:visible}
|
| 121 |
-
#group_tabs .tabitem{padding: 0}
|
| 122 |
-
.tab-wrapper{margin-top: -33px;z-index: 999;position: absolute;width: 100%;background-color: var(--block-background-fill);padding: 0;}
|
| 123 |
-
#component-9-button{width: 50%;justify-content: center}
|
| 124 |
-
#component-11-button{width: 50%;justify-content: center}
|
| 125 |
-
#or_item{text-align: center; padding-top: 1em; padding-bottom: 1em; font-size: 1.1em;margin-left: .5em;margin-right: .5em;width: calc(100% - 1em)}
|
| 126 |
-
#fivesec{margin-top: 5em;margin-left: .5em;margin-right: .5em;width: calc(100% - 1em)}
|
| 127 |
'''
|
| 128 |
|
| 129 |
-
with gr.Blocks(theme=gr.themes.
|
| 130 |
-
gr.Markdown("# Wan 2.2 Aduca-
|
| 131 |
|
| 132 |
with gr.Row(elem_id="general_items"):
|
| 133 |
-
with gr.Column():
|
| 134 |
-
with gr.Group(
|
| 135 |
with gr.Row():
|
| 136 |
-
# Coluna: Start
|
| 137 |
with gr.Column():
|
| 138 |
start_image = gr.Image(type="pil", label="Start Frame", sources=["upload", "clipboard"])
|
| 139 |
-
start_frame_tb = gr.Textbox(label="Start Frame
|
| 140 |
|
| 141 |
# Coluna: Handle (opcional)
|
| 142 |
with gr.Column():
|
| 143 |
handle_image = gr.Image(type="pil", label="Handle Image", sources=["upload", "clipboard"])
|
| 144 |
-
handle_frame_tb = gr.Textbox(label="Handle Frame
|
| 145 |
-
handle_peso_sl = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=1.0, label="Handle
|
| 146 |
-
|
| 147 |
-
# Coluna: End
|
| 148 |
-
with gr.
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
"Generate a custom end-frame with an edit model like Nano Banana or Qwen Image Edit",
|
| 158 |
-
elem_id="or_item",
|
| 159 |
-
)
|
| 160 |
-
prompt = gr.Textbox(label="Prompt", info="Describe the transition between the two images")
|
| 161 |
|
| 162 |
with gr.Accordion("Advanced Settings", open=False):
|
| 163 |
duration_seconds_input = gr.Slider(
|
| 164 |
-
minimum=MIN_DURATION,
|
| 165 |
-
maximum=MAX_DURATION,
|
| 166 |
-
step=0.1,
|
| 167 |
-
value=2.1,
|
| 168 |
label="Video Duration (seconds)",
|
| 169 |
-
info=f"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
)
|
| 171 |
-
negative_prompt_input = gr.Textbox(label="Negative Prompt", value=default_negative_prompt, lines=3)
|
| 172 |
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=8, label="Inference Steps")
|
| 173 |
guidance_scale_input = gr.Slider(
|
| 174 |
-
minimum=0.0, maximum=10.0, step=0.5, value=1.0, label="Guidance Scale
|
| 175 |
)
|
| 176 |
guidance_scale_2_input = gr.Slider(
|
| 177 |
-
minimum=0.0, maximum=10.0, step=0.5, value=1.0, label="Guidance Scale
|
| 178 |
)
|
| 179 |
with gr.Row():
|
| 180 |
-
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42)
|
| 181 |
-
randomize_seed_checkbox = gr.Checkbox(label="Randomize
|
| 182 |
|
| 183 |
generate_button = gr.Button("Generate Video", variant="primary")
|
| 184 |
|
| 185 |
-
with gr.Column():
|
| 186 |
output_video = gr.Video(label="Generated Video", autoplay=True)
|
| 187 |
-
|
| 188 |
-
|
|
|
|
| 189 |
|
| 190 |
-
# Inputs/outputs para o wrapper
|
| 191 |
ui_inputs = [
|
| 192 |
start_image, start_frame_tb,
|
| 193 |
handle_image, handle_frame_tb, handle_peso_sl,
|
|
@@ -196,36 +142,9 @@ with gr.Blocks(theme=gr.themes.Citrus(), css=css) as app:
|
|
| 196 |
steps_slider, guidance_scale_input, guidance_scale_2_input,
|
| 197 |
seed_input, randomize_seed_checkbox,
|
| 198 |
]
|
| 199 |
-
# Atualiza a lista de saídas para incluir o novo componente de imagem
|
| 200 |
ui_outputs = [output_video, seed_input, debug_video, steps_grid_image]
|
| 201 |
|
| 202 |
generate_button.click(fn=ui_generate_video, inputs=ui_inputs, outputs=ui_outputs)
|
| 203 |
|
| 204 |
-
# Cadeia “5 seconds”: alterna aba, gera end frame e dispara render
|
| 205 |
-
generate_5seconds.click(
|
| 206 |
-
fn=switch_to_upload_tab,
|
| 207 |
-
inputs=None,
|
| 208 |
-
outputs=[tabs]
|
| 209 |
-
).then(
|
| 210 |
-
fn=lambda img: generate_end_frame(
|
| 211 |
-
img,
|
| 212 |
-
"this image is a still frame from a movie. generate a new frame with what happens on this scene 5 seconds in the future"
|
| 213 |
-
),
|
| 214 |
-
inputs=[start_image],
|
| 215 |
-
outputs=[end_image]
|
| 216 |
-
).success(
|
| 217 |
-
fn=ui_generate_video,
|
| 218 |
-
inputs=ui_inputs,
|
| 219 |
-
outputs=ui_outputs
|
| 220 |
-
)
|
| 221 |
-
|
| 222 |
if __name__ == "__main__":
|
| 223 |
-
os.makedirs("examples", exist_ok=True)
|
| 224 |
-
try:
|
| 225 |
-
Image.new('RGB', (832, 480), color=(73, 109, 137)).save("examples/frame_1.png")
|
| 226 |
-
Image.new('RGB', (832, 480), color=(173, 109, 237)).save("examples/frame_2.png")
|
| 227 |
-
Image.new('RGB', (832, 480), color=(255, 255, 0)).save("examples/frame_3.png")
|
| 228 |
-
except:
|
| 229 |
-
pass
|
| 230 |
-
|
| 231 |
app.launch(server_name="0.0.0.0", server_port=7860, show_error=True)
|
|
|
|
| 5 |
import tempfile
|
| 6 |
import numpy as np
|
| 7 |
from PIL import Image
|
| 8 |
+
|
| 9 |
+
# === Constantes ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
MAX_SEED = np.iinfo(np.int32).max
|
| 11 |
FIXED_FPS = 16
|
| 12 |
MIN_FRAMES_MODEL = 8
|
| 13 |
MAX_FRAMES_MODEL = 81
|
| 14 |
MIN_DURATION = round(MIN_FRAMES_MODEL / FIXED_FPS, 1)
|
| 15 |
MAX_DURATION = round(MAX_FRAMES_MODEL / FIXED_FPS, 1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# === Importa o serviço de geração (manager) ===
|
| 18 |
from aduc_framework.managers.wan_manager import WanManager
|
| 19 |
wan_manager = WanManager()
|
| 20 |
|
| 21 |
+
# === Wrapper da UI para o Serviço ===
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def ui_generate_video(
|
| 23 |
start_image_pil,
|
| 24 |
start_frame_text,
|
|
|
|
| 29 |
end_frame_text,
|
| 30 |
end_peso,
|
| 31 |
prompt,
|
| 32 |
+
negative_prompt,
|
| 33 |
+
duration_seconds,
|
| 34 |
+
steps,
|
| 35 |
+
guidance_scale,
|
| 36 |
+
guidance_scale_2,
|
| 37 |
+
seed,
|
| 38 |
+
randomize_seed,
|
| 39 |
progress=gr.Progress(track_tqdm=True),
|
| 40 |
):
|
| 41 |
def to_int_safe(v, default=0):
|
|
|
|
| 45 |
try: return float(v)
|
| 46 |
except: return default
|
| 47 |
|
| 48 |
+
# Prepara a lista de imagens de condição
|
| 49 |
start_item = [start_image_pil, to_int_safe(start_frame_text, 0), 1.0]
|
|
|
|
| 50 |
items = [start_item]
|
| 51 |
if handle_image_pil is not None:
|
| 52 |
+
items.append([handle_image_pil, to_int_safe(handle_frame_text, 17), to_float_safe(handle_peso, 1.0)])
|
|
|
|
| 53 |
items.append([end_image_pil, to_int_safe(end_frame_text, MAX_FRAMES_MODEL - 1), to_float_safe(end_peso, 1.0)])
|
| 54 |
|
| 55 |
+
# Chama o manager, que agora retorna 4 valores
|
| 56 |
video_path, current_seed, debug_video_path, grid_image_path = wan_manager.generate_video_from_conditions(
|
| 57 |
images_condition_items=items,
|
| 58 |
prompt=prompt,
|
|
|
|
| 65 |
randomize_seed=bool(randomize_seed),
|
| 66 |
)
|
| 67 |
|
| 68 |
+
# Retorna os 4 valores para os componentes da UI
|
| 69 |
return video_path, current_seed, debug_video_path, grid_image_path
|
| 70 |
|
| 71 |
+
# === Interface Gradio ===
|
| 72 |
css = '''
|
| 73 |
.fillable{max-width: 1100px !important}
|
| 74 |
.dark .progress-text {color: white}
|
| 75 |
#general_items{margin-top: 2em}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
'''
|
| 77 |
|
| 78 |
+
with gr.Blocks(theme=gr.themes.Glass(), css=css) as app:
|
| 79 |
+
gr.Markdown("# Wan 2.2 Aduca-SDR")
|
| 80 |
|
| 81 |
with gr.Row(elem_id="general_items"):
|
| 82 |
+
with gr.Column(scale=2):
|
| 83 |
+
with gr.Group():
|
| 84 |
with gr.Row():
|
| 85 |
+
# Coluna: Start
|
| 86 |
with gr.Column():
|
| 87 |
start_image = gr.Image(type="pil", label="Start Frame", sources=["upload", "clipboard"])
|
| 88 |
+
start_frame_tb = gr.Textbox(label="Start Frame Index", value="0", interactive=False)
|
| 89 |
|
| 90 |
# Coluna: Handle (opcional)
|
| 91 |
with gr.Column():
|
| 92 |
handle_image = gr.Image(type="pil", label="Handle Image", sources=["upload", "clipboard"])
|
| 93 |
+
handle_frame_tb = gr.Textbox(label="Handle Frame Index", value="17")
|
| 94 |
+
handle_peso_sl = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=1.0, label="Handle Weight")
|
| 95 |
+
|
| 96 |
+
# Coluna: End
|
| 97 |
+
with gr.Column():
|
| 98 |
+
end_image = gr.Image(type="pil", label="End Frame", sources=["upload", "clipboard"])
|
| 99 |
+
end_frame_tb = gr.Textbox(label="End Frame Index", value=str(MAX_FRAMES_MODEL - 1), interactive=False)
|
| 100 |
+
end_peso_sl = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, value=1.0, label="End Weight")
|
| 101 |
+
|
| 102 |
+
prompt = gr.Textbox(
|
| 103 |
+
label="Prompt",
|
| 104 |
+
info="Descreva a transição e a cena. Ex: 'a beautiful woman walking on the beach, cinematic'."
|
| 105 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
|
| 107 |
with gr.Accordion("Advanced Settings", open=False):
|
| 108 |
duration_seconds_input = gr.Slider(
|
| 109 |
+
minimum=MIN_DURATION, maximum=MAX_DURATION, step=0.1, value=3.2,
|
|
|
|
|
|
|
|
|
|
| 110 |
label="Video Duration (seconds)",
|
| 111 |
+
info=f"Será ajustado para o formato 4n+1. Mín: {MIN_FRAMES_MODEL} frames, Máx: {MAX_FRAMES_MODEL} frames."
|
| 112 |
+
)
|
| 113 |
+
negative_prompt_input = gr.Textbox(
|
| 114 |
+
label="Negative Prompt",
|
| 115 |
+
value=wan_manager.default_negative_prompt,
|
| 116 |
+
lines=3
|
| 117 |
)
|
|
|
|
| 118 |
steps_slider = gr.Slider(minimum=1, maximum=30, step=1, value=8, label="Inference Steps")
|
| 119 |
guidance_scale_input = gr.Slider(
|
| 120 |
+
minimum=0.0, maximum=10.0, step=0.5, value=1.0, label="Guidance Scale (High Noise)"
|
| 121 |
)
|
| 122 |
guidance_scale_2_input = gr.Slider(
|
| 123 |
+
minimum=0.0, maximum=10.0, step=0.5, value=1.0, label="Guidance Scale (Low Noise)"
|
| 124 |
)
|
| 125 |
with gr.Row():
|
| 126 |
+
seed_input = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=42, interactive=True)
|
| 127 |
+
randomize_seed_checkbox = gr.Checkbox(label="Randomize Seed", value=True)
|
| 128 |
|
| 129 |
generate_button = gr.Button("Generate Video", variant="primary")
|
| 130 |
|
| 131 |
+
with gr.Column(scale=1):
|
| 132 |
output_video = gr.Video(label="Generated Video", autoplay=True)
|
| 133 |
+
with gr.Accordion("Debugging Visuals", open=True):
|
| 134 |
+
debug_video = gr.Video(label="Denoising Process Video", autoplay=False)
|
| 135 |
+
steps_grid_image = gr.Image(label="Denoising Steps Grid", interactive=False, type="filepath")
|
| 136 |
|
|
|
|
| 137 |
ui_inputs = [
|
| 138 |
start_image, start_frame_tb,
|
| 139 |
handle_image, handle_frame_tb, handle_peso_sl,
|
|
|
|
| 142 |
steps_slider, guidance_scale_input, guidance_scale_2_input,
|
| 143 |
seed_input, randomize_seed_checkbox,
|
| 144 |
]
|
|
|
|
| 145 |
ui_outputs = [output_video, seed_input, debug_video, steps_grid_image]
|
| 146 |
|
| 147 |
generate_button.click(fn=ui_generate_video, inputs=ui_inputs, outputs=ui_outputs)
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
app.launch(server_name="0.0.0.0", server_port=7860, show_error=True)
|