mmocr-demo / configs /textrecog /sar /sar_r31_parallel_decoder_chinese.py
Xianbao QIAN
add Dockerfile
378b1f2
raw
history blame
3.39 kB
_base_ = [
'../../_base_/default_runtime.py',
'../../_base_/schedules/schedule_adam_step_5e.py'
]
dict_file = 'data/chineseocr/labels/dict_printed_chinese_english_digits.txt'
label_convertor = dict(
type='AttnConvertor', dict_file=dict_file, with_unknown=True)
model = dict(
type='SARNet',
backbone=dict(type='ResNet31OCR'),
encoder=dict(
type='SAREncoder',
enc_bi_rnn=False,
enc_do_rnn=0.1,
enc_gru=False,
),
decoder=dict(
type='ParallelSARDecoder',
enc_bi_rnn=False,
dec_bi_rnn=False,
dec_do_rnn=0,
dec_gru=False,
pred_dropout=0.1,
d_k=512,
pred_concat=True),
loss=dict(type='SARLoss'),
label_convertor=label_convertor,
max_seq_len=30)
img_norm_cfg = dict(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='ResizeOCR',
height=48,
min_width=48,
max_width=256,
keep_aspect_ratio=True,
width_downsample_ratio=0.25),
dict(type='ToTensorOCR'),
dict(type='NormalizeOCR', **img_norm_cfg),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'filename', 'ori_shape', 'resize_shape', 'text', 'valid_ratio'
]),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiRotateAugOCR',
rotate_degrees=[0, 90, 270],
transforms=[
dict(
type='ResizeOCR',
height=48,
min_width=48,
max_width=256,
keep_aspect_ratio=True,
width_downsample_ratio=0.25),
dict(type='ToTensorOCR'),
dict(type='NormalizeOCR', **img_norm_cfg),
dict(
type='Collect',
keys=['img'],
meta_keys=[
'filename', 'ori_shape', 'resize_shape', 'valid_ratio'
]),
])
]
dataset_type = 'OCRDataset'
train_prefix = 'data/chinese/'
train_ann_file = train_prefix + 'labels/train.txt'
train = dict(
type=dataset_type,
img_prefix=train_prefix,
ann_file=train_ann_file,
loader=dict(
type='HardDiskLoader',
repeat=1,
parser=dict(
type='LineStrParser',
keys=['filename', 'text'],
keys_idx=[0, 1],
separator=' ')),
pipeline=None,
test_mode=False)
test_prefix = 'data/chineseocr/'
test_ann_file = test_prefix + 'labels/test.txt'
test = dict(
type=dataset_type,
img_prefix=test_prefix,
ann_file=test_ann_file,
loader=dict(
type='HardDiskLoader',
repeat=1,
parser=dict(
type='LineStrParser',
keys=['filename', 'text'],
keys_idx=[0, 1],
separator=' ')),
pipeline=None,
test_mode=False)
data = dict(
samples_per_gpu=40,
workers_per_gpu=2,
val_dataloader=dict(samples_per_gpu=1),
test_dataloader=dict(samples_per_gpu=1),
train=dict(
type='UniformConcatDataset', datasets=[train],
pipeline=train_pipeline),
val=dict(
type='UniformConcatDataset', datasets=[test], pipeline=test_pipeline),
test=dict(
type='UniformConcatDataset', datasets=[test], pipeline=test_pipeline))
evaluation = dict(interval=1, metric='acc')