Spaces:
Runtime error
Runtime error
label_convertor = dict( | |
type='AttnConvertor', dict_type='DICT90', with_unknown=True) | |
model = dict( | |
type='MASTER', | |
backbone=dict( | |
type='ResNet', | |
in_channels=3, | |
stem_channels=[64, 128], | |
block_cfgs=dict( | |
type='BasicBlock', | |
plugins=dict( | |
cfg=dict( | |
type='GCAModule', | |
ratio=0.0625, | |
n_head=1, | |
pooling_type='att', | |
is_att_scale=False, | |
fusion_type='channel_add'), | |
position='after_conv2')), | |
arch_layers=[1, 2, 5, 3], | |
arch_channels=[256, 256, 512, 512], | |
strides=[1, 1, 1, 1], | |
plugins=[ | |
dict( | |
cfg=dict(type='Maxpool2d', kernel_size=2, stride=(2, 2)), | |
stages=(True, True, False, False), | |
position='before_stage'), | |
dict( | |
cfg=dict(type='Maxpool2d', kernel_size=(2, 1), stride=(2, 1)), | |
stages=(False, False, True, False), | |
position='before_stage'), | |
dict( | |
cfg=dict( | |
type='ConvModule', | |
kernel_size=3, | |
stride=1, | |
padding=1, | |
norm_cfg=dict(type='BN'), | |
act_cfg=dict(type='ReLU')), | |
stages=(True, True, True, True), | |
position='after_stage') | |
], | |
init_cfg=[ | |
dict(type='Kaiming', layer='Conv2d'), | |
dict(type='Constant', val=1, layer='BatchNorm2d'), | |
]), | |
encoder=None, | |
decoder=dict( | |
type='MasterDecoder', | |
d_model=512, | |
n_head=8, | |
attn_drop=0., | |
ffn_drop=0., | |
d_inner=2048, | |
n_layers=3, | |
feat_pe_drop=0.2, | |
feat_size=6 * 40), | |
loss=dict(type='TFLoss', reduction='mean'), | |
label_convertor=label_convertor, | |
max_seq_len=30) | |