ShAnSantosh commited on
Commit
35e86b1
1 Parent(s): ba439ed

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -4
app.py CHANGED
@@ -1,7 +1,31 @@
1
  import gradio as gr
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!"
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import torch
3
+ import transformers
4
+ from transformers import BertTokenizer, BertForMaskedLM
5
 
6
+ device = torch.device('cpu')
 
7
 
8
+ NUM_CLASSES=5
9
+
10
+ model=BertForMaskedLM.from_pretrained("./")
11
+ tokenizer=BertTokenizer.from_pretrained("./")
12
+
13
+
14
+ def predict(text=None) -> dict:
15
+ model.eval()
16
+ inputs = tokenizer(text, return_tensors="pt")
17
+ input_ids = inputs["input_ids"].to(device)
18
+ attention_mask = inputs["attention_mask"].to(device)
19
+ model.to(device)
20
+ token_logits = model(input_ids, attention_mask=attention_mask).logits
21
+ mask_token_index = torch.where(inputs_ex["input_ids"] == tokenizer.mask_token_id)[1]
22
+ mask_token_logits = token_logits[0, mask_token_index, :]
23
+ top_5_tokens = torch.topk(mask_token_logits, NUM_CLASSES, dim=1).indices[0].tolist()
24
+ score = torch.nn.functional.softmax(mask_token_logits)[0]
25
+ top_5_score = torch.topk(score, NUM_CLASSES).values.tolist()
26
+ return {tokenizer.decode([tok]): float(score) for tok, score in zip(top_5_tokens, top_5_score)}
27
+
28
+ gr.Interface(fn=predict,
29
+ inputs=gr.inputs.Textbox(lines=2, placeholder="Your Text… "),
30
+ title="Mask Language Modeling - Demo",
31
+ outputs=gr.outputs.Label(num_top_classes=NUM_CLASSES)).launch()