Spaces:
Runtime error
Runtime error
RasmusToivanen
commited on
Commit
β’
c2ae77e
1
Parent(s):
b8abbf2
add files
Browse files- README.md +36 -4
- app.py +321 -0
- examples/.gitattributes +3 -0
- examples/video_1.json +1 -0
- examples/video_1.mp4 +3 -0
- examples/video_2.json +1 -0
- examples/video_2.mp4 +3 -0
- packages.txt +1 -0
- requirements.txt +16 -0
README.md
CHANGED
@@ -1,13 +1,45 @@
|
|
1 |
---
|
2 |
title: Fin Eng ASR Autosubtitles
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.0.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
title: Fin Eng ASR Autosubtitles
|
3 |
+
emoji: π
|
4 |
+
colorFrom: indigo
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.0.24
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
14 |
+
|
15 |
+
We use Opus-MT models in the code. Here is the citations
|
16 |
+
```
|
17 |
+
@inproceedings{tiedemann-thottingal-2020-opus,
|
18 |
+
title = "{OPUS}-{MT} {--} Building open translation services for the World",
|
19 |
+
author = {Tiedemann, J{\"o}rg and Thottingal, Santhosh},
|
20 |
+
booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
|
21 |
+
month = nov,
|
22 |
+
year = "2020",
|
23 |
+
address = "Lisboa, Portugal",
|
24 |
+
publisher = "European Association for Machine Translation",
|
25 |
+
url = "https://aclanthology.org/2020.eamt-1.61",
|
26 |
+
pages = "479--480",
|
27 |
+
}
|
28 |
+
@inproceedings{tiedemann-2020-tatoeba,
|
29 |
+
title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
|
30 |
+
author = {Tiedemann, J{\"o}rg},
|
31 |
+
booktitle = "Proceedings of the Fifth Conference on Machine Translation",
|
32 |
+
month = nov,
|
33 |
+
year = "2020",
|
34 |
+
address = "Online",
|
35 |
+
publisher = "Association for Computational Linguistics",
|
36 |
+
url = "https://aclanthology.org/2020.wmt-1.139",
|
37 |
+
pages = "1174--1182",
|
38 |
+
}
|
39 |
+
|
40 |
+
Wav2vec2:
|
41 |
+
BAEVSKI, Alexei, et al. wav2vec 2.0: A framework for self-supervised learning of speech representations. Advances in Neural Information Processing Systems, 2020, 33: 12449-12460.
|
42 |
+
|
43 |
+
T5:
|
44 |
+
RAFFEL, Colin, et al. Exploring the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 2020, 21.140: 1-67.
|
45 |
+
```
|
app.py
ADDED
@@ -0,0 +1,321 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import json
|
3 |
+
from difflib import Differ
|
4 |
+
import ffmpeg
|
5 |
+
import os
|
6 |
+
from pathlib import Path
|
7 |
+
import time
|
8 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
9 |
+
from transformers import MarianMTModel, MarianTokenizer
|
10 |
+
import pandas as pd
|
11 |
+
import re
|
12 |
+
import time
|
13 |
+
import os
|
14 |
+
from fuzzywuzzy import fuzz
|
15 |
+
from fastT5 import export_and_get_onnx_model
|
16 |
+
import torch
|
17 |
+
from transformers import pipeline
|
18 |
+
|
19 |
+
MODEL = "Finnish-NLP/wav2vec2-large-uralic-voxpopuli-v2-finnish"
|
20 |
+
marian_nmt_model = "Helsinki-NLP/opus-mt-tc-big-fi-en"
|
21 |
+
tokenizer_marian = MarianTokenizer.from_pretrained(marian_nmt_model)
|
22 |
+
model = MarianMTModel.from_pretrained(marian_nmt_model)
|
23 |
+
|
24 |
+
cuda = torch.device(
|
25 |
+
'cuda:0') if torch.cuda.is_available() else torch.device('cpu')
|
26 |
+
sr_pipeline_device = 0 if torch.cuda.is_available() else -1
|
27 |
+
|
28 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
+
speech_recognizer = pipeline(
|
30 |
+
task="automatic-speech-recognition",
|
31 |
+
model=f'{MODEL}',
|
32 |
+
tokenizer=f'{MODEL}',
|
33 |
+
framework="pt",
|
34 |
+
device=sr_pipeline_device,
|
35 |
+
)
|
36 |
+
|
37 |
+
model_checkpoint = 'Finnish-NLP/t5-small-nl24-casing-punctuation-correction'
|
38 |
+
tokenizer_t5 = AutoTokenizer.from_pretrained(model_checkpoint)
|
39 |
+
model_t5 = export_and_get_onnx_model(model_checkpoint)
|
40 |
+
#model_t5 = AutoModelForSeq2SeqLM.from_pretrained(model_checkpoint, from_flax=False, torch_dtype=torch.float32).to(device)
|
41 |
+
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
videos_out_path = Path("./videos_out")
|
46 |
+
videos_out_path.mkdir(parents=True, exist_ok=True)
|
47 |
+
|
48 |
+
samples_data = sorted(Path('examples').glob('*.json'))
|
49 |
+
SAMPLES = []
|
50 |
+
for file in samples_data:
|
51 |
+
with open(file) as f:
|
52 |
+
sample = json.load(f)
|
53 |
+
SAMPLES.append(sample)
|
54 |
+
VIDEOS = list(map(lambda x: [x['video']], SAMPLES))
|
55 |
+
|
56 |
+
total_inferences_since_reboot = 0
|
57 |
+
total_cuts_since_reboot = 0
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
async def speech_to_text(video_file_path):
|
63 |
+
"""
|
64 |
+
Takes a video path to convert to audio, transcribe audio channel to text timestamps
|
65 |
+
|
66 |
+
Using https://huggingface.co/tasks/automatic-speech-recognition pipeline
|
67 |
+
"""
|
68 |
+
global total_inferences_since_reboot
|
69 |
+
if(video_file_path == None):
|
70 |
+
raise ValueError("Error no video input")
|
71 |
+
|
72 |
+
video_path = Path(video_file_path)
|
73 |
+
|
74 |
+
try:
|
75 |
+
# convert video to audio 16k using PIPE to audio_memory
|
76 |
+
audio_memory, _ = ffmpeg.input(video_path).output(
|
77 |
+
'-', format="wav", ac=1, ar='16k').overwrite_output().global_args('-loglevel', 'quiet').run(capture_stdout=True)
|
78 |
+
except Exception as e:
|
79 |
+
raise RuntimeError("Error converting video to audio")
|
80 |
+
|
81 |
+
last_time = time.time()
|
82 |
+
|
83 |
+
try:
|
84 |
+
|
85 |
+
output = speech_recognizer(
|
86 |
+
audio_memory, return_timestamps="word", chunk_length_s=10, stride_length_s=(4, 2))
|
87 |
+
|
88 |
+
transcription = output["text"].lower()
|
89 |
+
|
90 |
+
timestamps = [[chunk["text"].lower(), chunk["timestamp"][0], chunk["timestamp"][1]]
|
91 |
+
for chunk in output['chunks']]
|
92 |
+
input_ids = tokenizer_t5(transcription, return_tensors="pt").input_ids.to(device)
|
93 |
+
outputs = model_t5.generate(input_ids, max_length=128)
|
94 |
+
case_corrected_text = tokenizer_t5.decode(outputs[0], skip_special_tokens=True)
|
95 |
+
translated = model.generate(**tokenizer_marian([case_corrected_text], return_tensors="pt", padding=True))
|
96 |
+
translated_plain = "".join([tokenizer_marian.decode(t, skip_special_tokens=True) for t in translated])
|
97 |
+
|
98 |
+
for timestamp in timestamps:
|
99 |
+
total_inferences_since_reboot += 1
|
100 |
+
|
101 |
+
|
102 |
+
df = pd.DataFrame(timestamps, columns = ['word', 'start','stop'])
|
103 |
+
|
104 |
+
df['start'] = df['start'].astype('float16')
|
105 |
+
df['stop'] = df['stop'].astype('float16')
|
106 |
+
|
107 |
+
|
108 |
+
print("\n\ntotal_inferences_since_reboot: ",
|
109 |
+
total_inferences_since_reboot, "\n\n")
|
110 |
+
return (transcription, transcription, timestamps,df, case_corrected_text, translated_plain)
|
111 |
+
except Exception as e:
|
112 |
+
raise RuntimeError("Error Running inference with local model", e)
|
113 |
+
|
114 |
+
|
115 |
+
def create_srt(text_out_t5, df):
|
116 |
+
|
117 |
+
df.columns = ['word', 'start', 'stop']
|
118 |
+
|
119 |
+
df_sentences = pd.DataFrame(columns=['sentence','start','stop','translated'])
|
120 |
+
found_match_value = 0
|
121 |
+
found_match_word = ""
|
122 |
+
|
123 |
+
t5_sentences = re.split('[.]|[?]|[!]', text_out_t5)
|
124 |
+
t5_sentences = [sentence.replace('.','').replace('?','').replace('!','') for sentence in t5_sentences if sentence]
|
125 |
+
|
126 |
+
for i, sentence in enumerate(t5_sentences):
|
127 |
+
sentence = sentence.lower().split(" ")
|
128 |
+
if i == 0:
|
129 |
+
df_subset = df[df['stop'] <10]
|
130 |
+
start = df.iloc[0]['start']
|
131 |
+
|
132 |
+
for j, word in enumerate(df_subset['word']):
|
133 |
+
temp_value = fuzz.partial_ratio((word), sentence[-1])
|
134 |
+
if temp_value > found_match_value:
|
135 |
+
found_match_value = temp_value
|
136 |
+
found_match_word = word
|
137 |
+
|
138 |
+
stop = df_subset[df_subset['word'] == found_match_word]
|
139 |
+
|
140 |
+
translated = model.generate(**tokenizer_marian(t5_sentences[i], return_tensors="pt", padding=True))
|
141 |
+
translated_plain = [tokenizer_marian.decode(t, skip_special_tokens=True) for t in translated]
|
142 |
+
|
143 |
+
dict_to_add = {
|
144 |
+
'sentence': t5_sentences[i],
|
145 |
+
'start': start,
|
146 |
+
'stop': stop.iloc[0]['stop'],
|
147 |
+
'translated': translated_plain[0]
|
148 |
+
}
|
149 |
+
|
150 |
+
df_sentences = df_sentences.append(dict_to_add, ignore_index=True)
|
151 |
+
new_start = df.iloc[stop.index.values[0]+1]['start']
|
152 |
+
new_stop = new_start + 10
|
153 |
+
else:
|
154 |
+
found_match_value = 0
|
155 |
+
found_match_word = ""
|
156 |
+
|
157 |
+
df_subset = df[(df['start'] >= new_start) & (df['stop'] <= new_stop)]
|
158 |
+
start = df_subset.iloc[0]['start']
|
159 |
+
|
160 |
+
for j, word in enumerate(df_subset['word']):
|
161 |
+
temp_value = fuzz.partial_ratio((word), sentence[-1])
|
162 |
+
if temp_value > found_match_value:
|
163 |
+
found_match_value = temp_value
|
164 |
+
found_match_word = word
|
165 |
+
stop = df_subset[df_subset['word'] == found_match_word]
|
166 |
+
|
167 |
+
|
168 |
+
translated = model.generate(**tokenizer_marian(t5_sentences[i], return_tensors="pt", padding=True))
|
169 |
+
translated_plain = [tokenizer_marian.decode(t, skip_special_tokens=True) for t in translated]
|
170 |
+
|
171 |
+
|
172 |
+
dict_to_add = {
|
173 |
+
'sentence': t5_sentences[i],
|
174 |
+
'start': start,
|
175 |
+
'stop': stop.iloc[0]['stop'],
|
176 |
+
'translated': translated_plain[0]
|
177 |
+
}
|
178 |
+
df_sentences = df_sentences.append(dict_to_add, ignore_index=True)
|
179 |
+
try:
|
180 |
+
new_start = df.iloc[stop.index.values[0]+1]['start']
|
181 |
+
new_stop = new_start + 10
|
182 |
+
except Exception as e:
|
183 |
+
df_sentences = df_sentences.iloc[0:i+1]
|
184 |
+
|
185 |
+
return df_sentences
|
186 |
+
|
187 |
+
def create_srt_and_burn(video_in, srt_sentences):
|
188 |
+
srt_sentences.columns = ['sentence', 'start', 'stop','translated']
|
189 |
+
srt_sentences.dropna(inplace=True)
|
190 |
+
srt_sentences['start'] = srt_sentences['start'].astype('float')
|
191 |
+
srt_sentences['stop'] = srt_sentences['stop'].astype('float')
|
192 |
+
|
193 |
+
|
194 |
+
with open('testi.srt','w') as file:
|
195 |
+
for i in range(len(srt_sentences)):
|
196 |
+
file.write(str(i+1))
|
197 |
+
file.write('\n')
|
198 |
+
start = (time.strftime('%H:%M:%S', time.gmtime(srt_sentences.iloc[i]['start'])))
|
199 |
+
if "." in str(srt_sentences.iloc[i]['start']):
|
200 |
+
if len(str(srt_sentences.iloc[i]['start']).split('.')[1]) > 3:
|
201 |
+
start = start + '.' + str(srt_sentences.iloc[i]['start']).split('.')[1][:3]
|
202 |
+
else:
|
203 |
+
start = start + '.' + str(srt_sentences.iloc[i]['start']).split('.')[1]
|
204 |
+
file.write(start)
|
205 |
+
stop = (time.strftime('%H:%M:%S', time.gmtime(srt_sentences.iloc[i]['stop'])))
|
206 |
+
if len(str(srt_sentences.iloc[i]['stop']).split('.')[1]) > 3:
|
207 |
+
stop = stop + '.' + str(srt_sentences.iloc[i]['stop']).split('.')[1][:3]
|
208 |
+
else:
|
209 |
+
stop = stop + '.' + str(srt_sentences.iloc[i]['stop']).split('.')[1]
|
210 |
+
file.write(' --> ')
|
211 |
+
file.write(stop)
|
212 |
+
file.write('\n')
|
213 |
+
file.writelines(srt_sentences.iloc[i]['translated'])
|
214 |
+
if int(i) != len(srt_sentences)-1:
|
215 |
+
file.write('\n\n')
|
216 |
+
try:
|
217 |
+
file1 = open('./testi.srt', 'r')
|
218 |
+
Lines = file1.readlines()
|
219 |
+
|
220 |
+
count = 0
|
221 |
+
# Strips the newline character
|
222 |
+
for line in Lines:
|
223 |
+
count += 1
|
224 |
+
|
225 |
+
|
226 |
+
|
227 |
+
video_out = str(Path(video_in)).replace('.mp4', '_out.mp4')
|
228 |
+
command = "ffmpeg -i {} -y -vf subtitles=./testi.srt {}".format(Path(video_in), Path(video_out))
|
229 |
+
os.system(command)
|
230 |
+
return video_out
|
231 |
+
except Exception as e:
|
232 |
+
print(e)
|
233 |
+
return video_out
|
234 |
+
|
235 |
+
|
236 |
+
# ---- Gradio Layout -----
|
237 |
+
video_in = gr.Video(label="Video file", interactive=True)
|
238 |
+
text_in = gr.Textbox(label="Transcription", lines=10, interactive=True)
|
239 |
+
text_out_t5 = gr.Textbox(label="Transcription T5", lines=10, interactive=True)
|
240 |
+
translation_out = gr.Textbox(label="Translation", lines=10, interactive=True)
|
241 |
+
text_out_timestamps = gr.Textbox(label="Word level timestamps", lines=10, interactive=True)
|
242 |
+
srt_sentences = gr.DataFrame(label="Srt lines", row_count=(0, "dynamic"))
|
243 |
+
video_out = gr.Video(label="Video Out")
|
244 |
+
diff_out = gr.HighlightedText(label="Cuts Diffs", combine_adjacent=True)
|
245 |
+
examples = gr.components.Dataset(
|
246 |
+
components=[video_in], samples=VIDEOS, type="index")
|
247 |
+
|
248 |
+
demo = gr.Blocks(enable_queue=True, css='''
|
249 |
+
#cut_btn, #reset_btn { align-self:stretch; }
|
250 |
+
#\\31 3 { max-width: 540px; }
|
251 |
+
.output-markdown {max-width: 65ch !important;}
|
252 |
+
''')
|
253 |
+
demo.encrypt = False
|
254 |
+
with demo:
|
255 |
+
transcription_var = gr.Variable()
|
256 |
+
timestamps_var = gr.Variable()
|
257 |
+
timestamps_df = gr.Dataframe(visible=False, row_count=(0, "dynamic"))
|
258 |
+
with gr.Row():
|
259 |
+
with gr.Column():
|
260 |
+
gr.Markdown('''
|
261 |
+
# Create videos with English subtitles from videos spoken in Finnish
|
262 |
+
This project is a quick proof of concept of a simple video editor where you can add English subtitles to Finnish videos.
|
263 |
+
This space currently only works for short videos (Up to 128 tokens) but will be improved in next versions.
|
264 |
+
Space uses our finetuned Finnish ASR models, Our pretrained + finetuned Finnish T5 model for casing+punctuation correction and Opus-MT models from Helsinki University for Finnish --> English translation.
|
265 |
+
This space was inspired by https://huggingface.co/spaces/radames/edit-video-by-editing-text
|
266 |
+
''')
|
267 |
+
|
268 |
+
with gr.Row():
|
269 |
+
|
270 |
+
examples.render()
|
271 |
+
|
272 |
+
def load_example(id):
|
273 |
+
video = SAMPLES[id]['video']
|
274 |
+
transcription = ''
|
275 |
+
timestamps = SAMPLES[id]['timestamps']
|
276 |
+
|
277 |
+
return (video, transcription, transcription, timestamps)
|
278 |
+
|
279 |
+
examples.click(
|
280 |
+
load_example,
|
281 |
+
inputs=[examples],
|
282 |
+
outputs=[video_in, text_in, transcription_var, timestamps_var],
|
283 |
+
queue=False)
|
284 |
+
with gr.Row():
|
285 |
+
with gr.Column():
|
286 |
+
video_in.render()
|
287 |
+
transcribe_btn = gr.Button("1. Press here to transcribe Audio")
|
288 |
+
transcribe_btn.click(speech_to_text, [video_in], [
|
289 |
+
text_in, transcription_var, text_out_timestamps,timestamps_df, text_out_t5, translation_out])
|
290 |
+
|
291 |
+
with gr.Row():
|
292 |
+
gr.Markdown('''
|
293 |
+
### Here you will get varying outputs from different parts of the processing
|
294 |
+
ASR model output, T5 model output which corrects casing + hyphenation, sentence level translations and word level timestamps''')
|
295 |
+
|
296 |
+
with gr.Row():
|
297 |
+
with gr.Column():
|
298 |
+
text_in.render()
|
299 |
+
with gr.Column():
|
300 |
+
text_out_t5.render()
|
301 |
+
with gr.Column():
|
302 |
+
translation_out.render()
|
303 |
+
with gr.Column():
|
304 |
+
text_out_timestamps.render()
|
305 |
+
with gr.Row():
|
306 |
+
with gr.Column():
|
307 |
+
translate_and_make_srt_btn = gr.Button("2. Press here to create rows for subtitles")
|
308 |
+
translate_and_make_srt_btn.click(create_srt, [text_out_t5, timestamps_df], [
|
309 |
+
srt_sentences])
|
310 |
+
with gr.Row():
|
311 |
+
with gr.Column():
|
312 |
+
srt_sentences.render()
|
313 |
+
with gr.Row():
|
314 |
+
with gr.Column():
|
315 |
+
translate_and_make_srt_btn = gr.Button("3. Press here to create subtitle file and insert translations to video")
|
316 |
+
translate_and_make_srt_btn.click(create_srt_and_burn, [video_in, srt_sentences], [
|
317 |
+
video_out])
|
318 |
+
video_out.render()
|
319 |
+
|
320 |
+
if __name__ == "__main__":
|
321 |
+
demo.launch(debug=True)
|
examples/.gitattributes
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
eka.mp4 filter=lfs diff=lfs merge=lfs -text
|
2 |
+
toka.mp4 filter=lfs diff=lfs merge=lfs -text
|
3 |
+
kolmas.mp4 filter=lfs diff=lfs merge=lfs -text
|
examples/video_1.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video":"./examples/video_1.mp4", "transcription": "", "timestamps": []}
|
examples/video_1.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a2274caa70e7be8994aa0b2e6c29eface3817f53d5e37d3f3984f95e5460dd4f
|
3 |
+
size 31346388
|
examples/video_2.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"video":"./examples/video_2.mp4", "transcription": "", "timestamps": []}
|
examples/video_2.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e0ffb151623c1978af61e1a476fae4385deba658427b005ceb907bd95106eb2
|
3 |
+
size 32746315
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
transformers
|
3 |
+
gradio==3.0.24
|
4 |
+
datasets
|
5 |
+
librosa
|
6 |
+
ffmpeg-python
|
7 |
+
python-dotenv
|
8 |
+
pandas
|
9 |
+
fuzzywuzzy
|
10 |
+
python-Levenshtein
|
11 |
+
sentencepiece
|
12 |
+
protobuf
|
13 |
+
pyctcdecode
|
14 |
+
https://github.com/kpu/kenlm/archive/master.zip
|
15 |
+
sacremoses
|
16 |
+
fastt5
|