Update app.py
Browse files
app.py
CHANGED
@@ -1,42 +1,37 @@
|
|
1 |
-
# Cargamos librerías
|
2 |
import pickle
|
3 |
import numpy as np
|
4 |
import gradio as gr
|
5 |
-
|
6 |
import pandas as pd
|
7 |
from sklearn.model_selection import train_test_split
|
8 |
from sklearn.ensemble import ExtraTreesRegressor
|
9 |
|
10 |
-
# You can use this block to train and save a model.
|
11 |
-
|
12 |
-
|
13 |
-
# Load the data
|
14 |
filename = 'Dataset_RCS_3.csv'
|
15 |
names0 = ['JET', "Suelo",'SPT', 'WtoC', 'Presion', 'Velocidad','RCS']
|
16 |
dataset=pd.read_csv(filename, names=names0)
|
17 |
-
|
18 |
y = dataset['RCS']
|
19 |
X = dataset.drop('RCS', axis=1)
|
20 |
-
|
21 |
categorical_cols = ['JET', "Suelo"]
|
22 |
df = pd.get_dummies(X, columns = categorical_cols)
|
23 |
|
24 |
-
|
25 |
validation_size = 0.20
|
26 |
seed = 10
|
27 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=validation_size, random_state=seed)
|
28 |
|
29 |
-
|
30 |
modelodef=ExtraTreesRegressor(
|
31 |
n_estimators=1000,
|
32 |
max_depth=9,
|
33 |
min_samples_leaf=1,
|
34 |
random_state=seed)
|
35 |
modelodef.fit(X_train, y_train)
|
36 |
-
|
37 |
pickle.dump(modelodef, open("modelodef.pkl", "wb"))
|
38 |
|
39 |
-
|
40 |
def RCS(JET, Suelo,SPT, WtoC, Presion, Velocidad):
|
41 |
modelodef = pickle.load(open("modelodef.pkl", "rb"))
|
42 |
prediction0 = modelodef.predict([[JET, Suelo,SPT, WtoC, Presion, Velocidad]])
|
|
|
|
|
1 |
import pickle
|
2 |
import numpy as np
|
3 |
import gradio as gr
|
4 |
+
import sklearn
|
5 |
import pandas as pd
|
6 |
from sklearn.model_selection import train_test_split
|
7 |
from sklearn.ensemble import ExtraTreesRegressor
|
8 |
|
|
|
|
|
|
|
|
|
9 |
filename = 'Dataset_RCS_3.csv'
|
10 |
names0 = ['JET', "Suelo",'SPT', 'WtoC', 'Presion', 'Velocidad','RCS']
|
11 |
dataset=pd.read_csv(filename, names=names0)
|
12 |
+
|
13 |
y = dataset['RCS']
|
14 |
X = dataset.drop('RCS', axis=1)
|
15 |
+
|
16 |
categorical_cols = ['JET', "Suelo"]
|
17 |
df = pd.get_dummies(X, columns = categorical_cols)
|
18 |
|
19 |
+
|
20 |
validation_size = 0.20
|
21 |
seed = 10
|
22 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=validation_size, random_state=seed)
|
23 |
|
24 |
+
|
25 |
modelodef=ExtraTreesRegressor(
|
26 |
n_estimators=1000,
|
27 |
max_depth=9,
|
28 |
min_samples_leaf=1,
|
29 |
random_state=seed)
|
30 |
modelodef.fit(X_train, y_train)
|
31 |
+
|
32 |
pickle.dump(modelodef, open("modelodef.pkl", "wb"))
|
33 |
|
34 |
+
|
35 |
def RCS(JET, Suelo,SPT, WtoC, Presion, Velocidad):
|
36 |
modelodef = pickle.load(open("modelodef.pkl", "rb"))
|
37 |
prediction0 = modelodef.predict([[JET, Suelo,SPT, WtoC, Presion, Velocidad]])
|