EstebanDC commited on
Commit
2ca7885
1 Parent(s): fce4831

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +43 -0
app.py ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Cargamos librerías
2
+ import pickle
3
+ import gradio as gr
4
+ import sklearn
5
+ import pandas as pd
6
+ from sklearn.model_selection import train_test_split
7
+ from sklearn.ensemble import ExtraTreesRegressor
8
+
9
+ # You can use this block to train and save a model.
10
+
11
+
12
+ # Load the data
13
+ filename = 'Dataset_RCS_3.csv'
14
+ names0 = ['JET', "Suelo",'SPT', 'WtoC', 'Presion', 'Velocidad','RCS']
15
+ dataset=pd.read_csv(filename, names=names0)
16
+ # Categorical data
17
+ categorical_cols = ['JET', "Suelo"]
18
+ df = pd.get_dummies(X, columns = categorical_cols)
19
+
20
+ # Split the data into training and testing sets
21
+ validation_size = 0.20
22
+ seed = 10
23
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=validation_size, random_state=seed)
24
+
25
+ # Train the model
26
+ modelodef=ExtraTreesRegressor(
27
+ n_estimators=1000,
28
+ max_depth=9,
29
+ min_samples_leaf=1,
30
+ random_state=seed)
31
+ modelodef.fit(X_train, y_train)
32
+ # Save the model
33
+ pickle.dump(model, open("model.pkl", "wb"))
34
+
35
+ #create a function for gradio
36
+ def RCS(JET, Suelo,SPT, WtoC, Presion, Velocidad):
37
+ x = np.array([JET, Suelo,SPT, WtoC, Presion, Velocidad])
38
+ prediction = modelodef.predict(x.reshape(1, -1))
39
+ return prediction
40
+
41
+ outputs = gr.outputs.Textbox()
42
+ app = gr.Interface(fn=RCS, inputs=['number','number','number','number','number','number'], outputs=outputs,description="UCS jet grouting")
43
+ app.launch(share=True)