Spaces:
Sleeping
Sleeping
from PIL import Image | |
import torchvision.transforms as transforms | |
# لود مدل YOLOv5 | |
model = torch.hub.load('ultralytics/yolov5', 'yolov5s') | |
# پیشپردازش تصویر | |
def preprocess_image(image_path): | |
image = Image.open(image_path) | |
transform = transforms.Compose([ | |
transforms.Resize((640, 640)), | |
transforms.ToTensor() | |
]) | |
return transform(image).unsqueeze(0) | |
# آموزش مدل | |
def train_model(data_dir, epochs=10): | |
# آمادهسازی دادهها | |
dataset = ... # خواندن دادهها از data_dir | |
dataloader = ... # ایجاد DataLoader | |
# تنظیم پارامترهای آموزش | |
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) | |
criterion = torch.nn.CrossEntropyLoss() | |
for epoch in range(epochs): | |
for images, labels in dataloader: | |
optimizer.zero_grad() | |
outputs = model(images) | |
loss = criterion(outputs, labels) | |
loss.backward() | |
optimizer.step() | |
print(f'Epoch {epoch+1}/{epochs}, Loss: {loss.item()}') | |
# تشخیص مناطق دارای گپ | |
def detect_gaps(image_path): | |
image = preprocess_image(image_path) | |
results = model(image) | |
return results | |
# مثال استفاده | |
image_path = '/content/Sugarcane-Cultivation-in-Tamil-Nadu-1.jpg' | |
results = detect_gaps(image_path) | |
print(results) |